
FTI: high performance Fault Tolerance Interface for hybrid
systems

Leonardo
Bautista-Gomez

Tokyo Institute of Technology
INRIA

leobago {at}
matsulab.is.titech.ac.jp

Dimitri Komatitsch
Observatoire Midi-Pyrénées

University of Toulouse
dimitri.komatitsch {at}

get.obs-mip.fr

Naoya Maruyama
Tokyo Institute of Technology

naoya {at}
matsulab.is.titech.ac.jp

Seiji Tsuboi
JAMSTEC

tsuboi {at} jamstec.go.jp

Franck Cappello
INRIA

University of Illinois
fci {at} lri.fr

Satoshi Matsuoka
Tokyo Institute of Technology

National Institute of
Informatics

matsu {at} is.titech.ac.jp

ABSTRACT
Large scientific applications deployed on current petascale systems
expend a significant amount of their execution time dumping check-
point files to remote storage. New fault tolerant techniques will be
critical to efficiently exploit post-petascale systems. In this work,
we propose a low-overhead high-frequency multi-level checkpoint
technique in which we integrate a highly-reliable topology-aware
Reed-Solomon encoding in a three-level checkpoint scheme. We
efficiently hide the encoding time using one Fault-Tolerance ded-
icated thread per node. We implement our technique in the Fault
Tolerance Interface FTI. We evaluate the correctness of our perfor-
mance model and conduct a study of the reliability of our library.
To demonstrate the performance of FTI, we present a case study of
the Mw9.0 Tohoku Japan earthquake simulation with SPECFEM3D
on TSUBAME2.0. We demonstrate a checkpoint overhead as low
as 8% on sustained 0.1 petaflops runs (1152 GPUs) while check-
pointing at high frequency.

1. INTRODUCTION
In high performance computing (HPC), systems are built from

highly reliable components. However, the overall failure rate of su-
percomputers increases with component count. Nowadays, petas-
cale machines have a mean time between failures (MTBF) mea-
sured in hours or days[41] and fault tolerance (FT) is a well-known
issue. Long running large applications rely on fault-tolerant (FT)
techniques to successfully finish their long executions. Check-
point/Restart (CR) is a popular technique in which the applications
save their state in stable storage, frequently a parallel file system
(PFS); upon a failure, the application restarts from the last saved
checkpoint. CR is a relatively inexpensive technique in compari-
son with the process-replication scheme that imposes over 100%
of overhead.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC11November 12-18, 2011, Seattle, Washington, USA
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

However, when a large application is checkpointed, tens of thou-
sands of processes will each write several GBs of data and the total
checkpoint size will be in the order of several tens of TBs. Since
the I/O bandwidth of supercomputers does not increase at the same
speed as computational capabilities, large checkpoints can lead to
an I/O bottleneck, which causes up to 25% of overhead in current
petascale systems[38, 33]. Post-petascale systems will have a sig-
nificantly larger number of components and an important amount
of memory. This will have an impact on the system’s reliability.
With a shorter MTBF, those systems may require a higher check-
point frequency and at the same time they will have significantly
larger amounts of data to save.

Although the overall failure rate of future post-petascale systems
is a common factor to study when designing FT-techniques, an-
other important point to take into account is the pattern of the fail-
ures. Indeed, when moving from 90nm to 16nm technology, the
soft error rate (SER) is likely to increase significantly, as shown in
a recent study from Intel [40, 10]. A recent study by Dong et al.
explains how this provides an opportunity for local/global hybrid
checkpoint using new technologies such as phase change memories
(PCM) [2]. Moreover, some hard failures can be tolerated using
solid-state-drives (SSD) [31] and cross-node redundancy schemes,
such as checkpoint replication or XOR encoding [35] which allows
to leverage multi-level checkpointing, as proposed by Moody et al.
[1]. Furthermore, Cheng et al. demonstrated that more complex
erasure codes such as Reed-Solomon (RS) encoding can be used
to further increase the percentage of hard failures tolerated without
stressing the PFS [3]. Our work goes in the same direction as these
three studies and partially leverages some of those results.

1.1 Contributions
In this section we list the contributions of our current work with

respect to the cited works and to our previous publications. The
main contributions of this article are:

• We propose a model of a highly reliable erasure code scheme
based on our topology-aware RS encoding published in pre-
vious work [5]. We extend our previous research by studying
not only the scalability of the encoding algorithm but also the
impact of the checkpoint size per node and the group size,
on encoding and decoding performance. We evaluate and
prove the accuracy of our performance model and show that

our topology-aware RS encoding scheme is several orders of
magnitude more reliable than XOR encoding.

• We apply our FT-dedicated thread scheme presented in pre-
vious work [6] in order to further decrease the checkpoint
overhead and we integrate it for the first time in a multi-level
checkpoint technique that we implement in our FTI library.
Our evaluation shows that by using FT-dedicated threads in
the nodes we can efficiently hide the encoding time, mak-
ing its overhead negligible in comparison with a simple local
write checkpoint.

• We extend our evaluation with a functional test in a real case
study by simulating the March 11th Mw9.0 Tohoku, Japan
earthquake and we present synthetic seismograms for the Hi-
rono seismic recoding station in Fukushima prefecture.

• We perform a large scalability and overhead evaluation of
our library with SPECFEM3D and we show that FTI can
successfully scale to more than 1000 GPUs and reach over
100 TFlops while checkpointing at high frequency and caus-
ing only about 8% overhead in comparison with a not check-
pointed execution.

The remainder of this article is organized as follows. Section 2
discuses the background and motivations for this work. Section 3
presents our low-overhead high-frequency multi-level checkpoint
model and section 4 the implementation of our FTI library. In sec-
tion 5 we present our evaluation. Finally, in section 6 we present
some related work and section 7 concludes this article.

2. BACKGROUND AND MOTIVATIONS
In this section we discuss the importance of resiliency for post-

petascale systems, the limitations of PFS-based checkpointing and
the requirements of a post-petascale FT library.

2.1 Importance of reliable post-petascale
computing

In this work, we have chosen SPECFEM3D as a case study.
SPECFEM3D [50] is an application that uses a Spectral Finite El-
ement Method in three Dimensions to perform numerical calcula-
tion of synthetic seismograms in complex geological models and
that is capable of handling the full complexity of the physics of
seismic wave propagation in the full 3D Earth: anisotropy, attenua-
tion, gravity, rotation and presence of the oceans. It is widely used
in geophysics for instance to simulate the propagation of seismic
waves following large earthquakes.

Geophysics is a science basically related to observations, and
its rapid evolution in the last decades is mainly due to significant
meteorological advances that improved the quality and quantity of
the data collected. Obviously, progress achieved in instrumentation
and data acquisition must be accompanied by a better theoretical
understanding of underlying physical phenomena as well as better
modeling of these phenomena by means of 3D numerical modeling
techniques.

In the near future, the acoustic and mechanic scientific communi-
ties want to achieve simulations at increasingly higher resolutions,
thus it is important to adapt current numerical methods to the ar-
chitecture of modern large scale supercomputers. For example, ul-
trasonography uses frequencies in the order of several MHz, which
leads to millimeter wavelengths over several tens of centimeters
distances in a 3D model. Also, high-frequency sonars use frequen-
cies around 3 kilohertz over distances of several kilometers, in 3D
models as well.

Another example that is very difficult to perform at high resolu-
tion is the calculation of the propagation of seismic waves through
the entire Earth, including its solid inner core and fluid outer core.
Indeed, for such computations one often needs to solve the elastic
or viscoelastic wave equation for an anisotropic three-dimensional
model of the Earth at very short seismic periods (around 2 seconds,
that is 0.5 Hz, for the whole Earth), which remains a very diffi-
cult challenge from a computational point of view. Future post-
petascale supercomputers will make such long simulations possi-
ble if the applications can successfully finish their execution even
in the presence of failures. Hence the importance of reliable post-
petascale systems, not only for the geophysics community, but for
the global scientific community using numerical modeling tech-
niques in general.

2.2 Post-petascale resiliency
First, the progress in transistors size will increase the SER sev-

eral times [40, 10] in such way that soft errors are expected to be
the most common type of failures for post-petascale systems.

Second, post-petascale systems are expected to have tens of thou-
sands of computing nodes and hundreds of thousands of sockets.
While HPC systems are built with highly reliable components, such
large machines are expected to experience failures on a regular ba-
sis [9, 33, 38]. If CR is used to deal with failures, then the check-
point frequency should be high enough to decrease the recovery
cost induced by the re-execution of the lost work.

Third, to provide the high level of concurrency needed, these
machines will likely be very dense, which in turn may increase the
probability of correlated failures.

For example, at the Lawrence Livermore National Laboratory
(LLNL), on the Coastal system, two nodes share a single power
supply[1], thus when a power supply fails two nodes fail simulta-
neously. Sometimes, the patterns of such correlated failures may
be predictable and then this information can be taken into account
when deploying FT-techniques. However, other more complex cor-
related failures can occur. This has been observed in some cases, in
clusters where the cooling system is located at the lower part of the
racks, when the cooling system does not work properly, the nodes
located in the upper part of the racks overheat and fail simultane-
ously. Also, when a part of the network fails, a subset of nodes will
be not accessible.

As a consequence, post-petascale FT-techniques should use dif-
ferent schemes with different levels of reliability and different costs
to improve the efficiency of the system (See section 3.4).

2.3 Remote-disk based checkpoint limitations
As explained in section 2.2, the failure rate will increase signif-

icantly in post-petascale systems, thus the checkpoint frequency is
likely to be higher than for current systems, in addition, the I/O
bandwidth is not scaling as fast as the computing capabilities cre-
ating an I/O bottleneck when the applications try to write a large
amount of checkpoint data in the PFS [39, 41, 43]. Moreover, as
explained in section 2.2, an important percentage of failures is due
to soft errors and can be recovered with other faster techniques (see
section 3.4). Overall, although several PFS, such as Panasas [11],
GPFS [12] and Lustre[13], have made important progress in per-
formance, PFS based checkpoint is a time expensive approach, that
is only required for a small percentage of failures[1, 2].

3. LOW-OVERHEAD HIGH-FREQUENCY
MULTI-LEVEL CHECKPOINT MODEL

The scalability issue of current PFS based CR is tightly linked to
the scaling difference between computing capacities and I/O band-

width. When the compute nodes have local storage to save the
checkpoint image, the checkpoint writing bandwidth increases lin-
early with the number of nodes avoiding network congestions and
I/O bottlenecks.

This is the case of the new Tokyo Institute of Technology super-
computer, TSUBAME2.0, ranking 5th in the Top500 list [7] and
4th in the Green500 list [8] at the time of this submission (August
2011). Indeed, TSUBAME2.0 has two Server-grade SCL SSDs in
each compute node, with a per node storage capacity of twice the
memory size per node. Other systems at LLNL also use SSDs on
the compute nodes to speed-up the checkpoint performance [1]. In
this work, we will focus on systems with local storage on the com-
pute nodes as an incentive to motivate co-design for future post-
petascale machines. For diskless systems we refer the reader to a
study done by Moody at al. on how to use these techniques using
extra nodes and in-memory checkpoint[1].

While storing the checkpoint files in local disks speeds up the
checkpoint writing performance, this simple scheme has a low re-
liability rate. Indeed, this technique can restart an application only
when all the checkpoint files are still available, such as for soft er-
rors or transient failures.

Dong et al. proposed an hybrid model [2] in which local check-
point in PCMs is mixed with less frequent global checkpoint, in
such way that soft errors can be recovered with the low-overhead
local checkpoints and the less frequent hard errors can be recovered
with global checkpoint. In this work, we modify and extend that ap-
proach using erasure codes as an intermediate level between basic
local checkpoint and global checkpoint. As a result, our model is
also tightly related to the multi-level checkpoint model proposed
by Moody et al. but with a more reliable and highly optimized for
hybrid systems L2 checkpoint (See section 3.4).

3.1 Topology-aware RS encoding
Hard failures can be recovered with a local checkpoint if the

checkpoint availability is guaranteed after the failure. To guarantee
this, one can use checkpoint replication or erasure codes. Check-
point replication in a partner node is simple to implement and only
requires an extra transfer after the local checkpoint is done. Check-
point replication can withstand failures as long as two partner nodes
do not fail simultaneously.

Erasure codes are a storage efficient way of tolerating hard fail-
ures. For example, using exclusive-or (XOR) encoding, a group
of N nodes can tolerate one node failure with a lower storage cost
than the checkpoint replication approach. In the worst case, both
approaches will fail to tolerate two simultaneous node failures but
they will always succeed in tolerating a single node failure. As-
suming the checkpoint files have a size S, the XOR technique will
generate S extra parity data when the replication approach will gen-
erate N*S extra replicated data, which is an significant difference.
Furthermore, this difference grows rapidly while trying to tolerate
several simultaneous failures.

In information theory, erasure codes transform a message of K
symbols into a longer message with K+M symbols in order to re-
cover the original message after losing one or several symbols. RS
is an optimal erasure code since it has the property that any K sym-
bols out of the K+M symbols are sufficient to recover the original
message. We chose RS encoding because we believe it is important
to maximize the reliability of the system, particularly when dealing
with correlated failures (See section 2.2). When using RS encoding
for FT in HPC, the system is partitioned in groups of K processes
(K checkpoint files), thus the groups can encode the checkpoint
files in parallel. Each group will generate M encoded checkpoint
files in order to tolerate M erasures[5].

In order to tolerate hard failures, the partitioning into groups
must take into account the topology of the machine. If M pro-
cesses of one group belong to the same node, a crash of that node
will produce an unrecoverable failure. To reach the optimal RS ef-
ficiency, we detect the processes belonging to the same node and
build a sketch of the cluster’s topology. Then, as shown in figure
1, the system is partitioned in such way that all the processes in a
group belong to different nodes, similar to the chipkill technology
used in computer memories.

The main drawback of the RS encoding is its complexity. In par-
ticular, for a group of K processes generating M encoded check-
point files, encoding time will increase linearly with M. For our
model we will assume that the encoding is overlapped with the ap-
plication execution (See section 3.3), thus we can choose the high-
est level of reliability and generate M=K encoded checkpoints per
group.

Figure 1: Topology-aware Reed-Solomon encoding

Since the encoded checkpoint files will be stored in the same
devices than the checkpoint files, one failure will generate two era-
sures, one checkpoint file and one encoded checkpoint file, thus
each group can tolerate M/2 process failures. Also, when a node
crashes, our topology-aware partitioning techniquedistributesthe
failure among different groups, as presented in figure 1.

3.2 Performance model
In previous work [5], we proposed an encoding algorithm and

focused on the scalability study. The complexity of the proposed
algorithm is presented in formula 1:

TRSenc. = t ∗ (r ∗z+(m∗ (a+b∗z+e∗z))+w∗z) (1)

where each group of k processes will generate m=k encoded check-
point files. The checkpoint files are divided in t blocks of size z. For
each block, the algorithm will read the block, perform m commu-
nications of z bytes and m encoding computations and finally write
the encoded block. We assume that it takes a + b*z time to transfer
a message of size z between two processors regardless of their loca-
tion, where a is the latency of the network and 1/b is the bandwidth
of the network, the encoding rate is e seconds per byte, the reading
rate is r seconds per byte and the writing rate is w seconds per byte.

The local storage in the compute nodes guarantees very fast read-
ing and writing performance, thus the reading and writing time is
negligible in comparison with the encoding computation (See sec-
tion 4.2). Furthermore, we optimized our algorithm by overlapping
communications and computation and by choosing the right block

size we can completely hide the communications (See section 4.2),
hence our formula is simplified as follows.

TRSenc. = t ∗m∗e∗z (2)

As we can see, the encoding complexity will depend on the check-
point size (s=t*z) and the group size (k=m), hence the encoding
time should increase linearly with these two factors.

The decoding computation will generally last twice longer than
the encoding because it is composed of two steps; the regeneration
of the lost checkpoint files (using the parity data generated by the
RS encoding), and the re-encoding of the checkpoint files to regen-
erate the lost encoded checkpoint files, so the system will be able
to tolerate a failure that occurs just after the recovery.

3.3 GPU computing and FT-dedicated
resources

Roadrunner [42] was in 2008 the first supercomputer to break the
petaflop barrier in Linpack [18] performance and it had an hybrid
architecture composed of Opteron processors and PowerXCell ac-
celerators. Hybrid systems have become an important trend in the
HPC community [32] in the last few years. As an example, three
of the first five supercomputers in the Top500 list [7] are currently
hybrid systems composed of CPUs and GPUs. While GPUs were
initially specific to graphics, they are now widely used as general
purpose devices in HPC and a significant number of scientific ap-
plications have been ported to GPU clusters, achieving significant
speed-ups in performance. GPUs are now used, not only for the
compute nodes, but also in storage systems [17, 34].

On the other hand, for many scientific applications it is very com-
plex to efficiently divide the same workload among the GPU and
CPUs in parallel. Indeed, since GPUs have a larger throughput
than CPUs, load balancing between these two devices is a difficult
issue and moreover, exploitation of substantially lower-performing
CPUs would not add much speedup for the effort. Thus, most of
developers will rather map one GPU with one CPU core using one
MPI process. Hence the role of CPUs are to serve as communica-
tion and service processors while the GPUs execute the dominant
weak scaling portion of the computation, and only compute the mi-
nor strong scaling, less parallelizable portion where their greater
single thread performance matters.

Figure 2: Reed-Solomon encoding hiding with one Fault Toler-
ance dedicated thread per node.

Since those hybrid systems tend to have excess CPU cores per
node when they execute such highly scaling applications as they

also have to cater to CPU-only applications for various reasons,
such GPU/CPU mapping will leave some CPU cores unused, thus
they can be used for resiliency. Generally, for important scientific
application involving longruns (that are likely to be checkpointed),
researchers will reserve a large number of exclusive nodes to guar-
antee the highest memory and network bandwidth.

For this kind of GPUs applications, it is possible to spawn one
extra FT-dedicated thread per node using the idle resources to im-
prove the checkpoint performance. Particularly in our technique,
we can delegate the RS encoding of all the local checkpoint files
to the FT-dedicated thread and overlap it with the application exe-
cution. By doing so, each FT-dedicated thread will encode several
checkpoint files in a serial fashion. Serializing the encoding tasks
will take longer than having each process encoding its own check-
point file. However, as presented in figure 2, in the former, the
encoding work can be done in parallel with the application exe-
cution, thus the FT-dedicated thread and serialized encoding mode
will impose a significantly lower overhead. It is important to no-
tice that the checkpoint interval has to be larger than or equal to the
serialized encoding time.

Moreover, this model can be extended to every kind of system
(hybrid or not) by sacrificing a small loss in performance when
launching a FT-dedicated thread per node. In current systems with
about 12 CPU cores per node, such technique will immediately
translate as an 8.3% loss in performance. Furthermore, since the
concurrency level per node will further increase in the next few
years, our model will impose a significantly lower overhead for
non-hybrid many-cores systems. For example, in a system with
128 threads per node, the loss in performance while dedicating one
thread per node for resiliency should be about 0.7%.

3.4 Multi-level checkpoint
For the first time in this work, we integrate our topology-aware

RS encoding and our FT-dedicated thread technique in a multi-level
checkpoint scheme. Multi-level checkpointing in which different
levels guarantee different reliability levels at different costs was
well modeled by Moody et al. [1] using a Markov model. In that
work, a three-level checkpoint scheme was proposed. In such a
scheme, the first level (L1) is a Local checkpoint on local SSDs,
the second level (L2) could be a Partner or a XOR technique, de-
pending on the user’s choice, and the third level (L3) is an standard
checkpoint to the PFS. Our model is based on this work but we
modify it and extend it using the techniques presented in the previ-
ous subsections.

We focus on the L2 of such a three-level scheme. In the worst
case scenario, the Partner and XOR techniques will fail to tolerate
two simultaneous failures (See section 3.1). Future large and dense
machines will probably suffer from correlated failures with a higher
frequency than current systems (See section 2.2), thus we motivate
the use of more reliable erasure codes, such as our topology-aware
RS encoding technique.

Moreover, in addition to the significant increase in reliability, we
improve the performance of the L2 checkpoint by efficiently hiding
the encoding work using one extra FT-dedicated thread per node.
In this way, we build a highly-reliable low-overhead L2 checkpoint.
The other two levels are Local checkpoint on SSDs for L1 and PFS-
based checkpoint for L3. Also, we improve the L3 checkpoint by
writing the checkpoint in local SSDs and then flushing the check-
point files to the PFS in parallel with the application execution,
similar to the OpenMPI staging option [44].

It is important to notice that we should be careful when using the
standard formula proposed by Young et al. [45] for the checkpoint
interval calculation for our L2 checkpoint because the L2 check-

point time and the L2 checkpoint cost are different. Indeed, the L2
checkpoint cost is the short time the application is stopped to store
the checkpoint in the local SSDs and the L2 checkpoint time in-
cludes the encoding time that is hidden. Since the writing into SSDs
time is very short in comparison with the encoding time, using the
standard formula may lead to a L2 checkpoint interval shorter than
the encoding time. For this reason, we should always verify that
the L2 checkpoint interval is larger than the encoding time, but
short enough to keep the FT-dedicated threads almost constantly
working to guarantee a high L2 checkpoint frequency. In addition,
between two L2 checkpoints the library can perform one or several
L1 checkpoints in order to deal with the increasing SER and other
transient failures (See section 2.2). The L2 checkpoint can deal
with one or multiple hard node failures while the L3 checkpoint
is expected to be used in very rare cases since the L2 checkpoint
should already guarantee a very high reliability level.

3.5 Reliability study
In our multi-level checkpoint model, the L1 checkpoint can toler-

ate every transient failure for which the checkpoint data is not lost.
In addition, the L2 checkpoint is designed to tolerate one or multi-
ple node hard failures for which part of the checkpoint data needs to
be regenerated. In order to calculate the L3 checkpoint frequency
we will determine the reliability of our L2 checkpoint technique us-
ing a probabilistic method. As explained in section 3.1, the system
is partitioned in groups of sizek and each group can toleratek/2
node hard failures. For simplicity we will assume in this section
that the total number of nodesn in the system is a multiple of the
group sizek. We also assume for this study a random distribution
of the failures.

Ideally, the probability for a system to experience a multiple
node failure is low. When such a failure occurs, the system will
lose part of the checkpoint data and it may be unable to recover it.
However, the capacity to reconstruct the lost data will depend on
the distribution of the failures among the groups. This is true for
XOR encoding as well, if at least one of the groups experiences
two failures simultaneously, the XOR technique will be unable to
recover the lost data. In our model, if at least one group experiences
(k/2)+1 failures simultaneously, the RS encoding will be unable
to recover the lost data. More generally, when at least one group
experiences more failures than its tolerance ratet, the L2 technique
will fail to restart the execution; we call such failure a catastrophic
failure.

Pr(x∩xCt.) = Pr(x)∗Pr(xCt. | x) (3)

The probability for a system to experience a catastrophic failure
of x nodes depends on the probability of experiencing a failure of
x nodes and the probability of such failure to be catastrophic, as
expressed in formula 3.

Parameter Description
n Total number of nodes in the system(n= k∗g)
k Size of the encoding groups
g Number of encoding groups
t Number of node failures tolerated per group
x Number of failed nodes for a given failure

Table 1: Resiliency study parameters

It is difficult to predict Pr(x) for future post-petascale systems;
for our evaluation we propose several scenarios using an exponen-
tial distribution based on a study of the failures of TSUBAME1

over the last 4 years (See section 5.2). In contrast, Pr(xCt. | x) can
be calculated using combinatorial theory.

We can express Pr(xCt. | x) as the probability for a failure to be
catastrophic, givenx nodes hard failures. We compute the proba-
bility of thosex nodes to be distributed in such way that at least one
group of the system containst +1 of thosex failed nodes. We call
such a distribution of the failed nodes a catastrophic distribution.
Then, Pr(xCt. | x) can be expressed as the ratio between the number
of catastrophic distributions and the total number of possible distri-
butions, as presented in formula 4 using the parameters presented
in table 1.

Pr(xCt. | x) =

(

g
1

)

∗

(

k
t +1

)

∗

(

n− (t +1)
x− (t +1)

)

(

n
x

) (4)

Using formula 3 and 4, we can model the reliability of a L2
checkpoint that uses erasure codes in large scale systems for a given
failure rate. This failure rate can be estimated by analyzing previ-
ous failure records. In our evaluation we will use these formulas
to compare the reliability of a system using XOR encoding and RS
encoding for several failures rate scenarios (See section 5.2).

4. FTI IMPLEMENTATION
In this section we explain how FTI works and give some details

about its implementation and optimizations.

4.1 FTI mechanisms
FTI is a Fault Tolerance Interface that aims to add a highly re-

liable layer between the operating system (OS) and the applica-
tion. It is implemented with C/MPI and Python in an effort to stay
portable to a wide variety of different platforms. The applications
can easily benefit from FTI functions by simply linking with the
library.

Since FTI spawns one extra MPI process per node it is impor-
tant to guarantee that the library will not cause any damage to the
application communication channels. Therefore, FTI has an initial-
ization call,FTI_Init(), that will perform all the necessary actions
before the application starts the real execution.FTI_Init() will start
by reading the configuration file that should be correctly filled by
the user before the execution. Once the configuration has been
checked, FTI will detect in which node each process resides and
will write this topology in a file. Then, it will delegate one process
per node as FT-manager and will create two MPI communicators,
one for the FT-managers and another for the application processes.
Then, FTI will create the encoding groups and create one MPI com-
municator per group, so the encoding groups are kept independent.
Each group will then generate the RS encoding matrix and the FT-
managers will then wait, ready to encode the checkpoint files.

The MPI communicator created by FTI for the application pro-
cesses is calledFTI_COMM_WORLDand replaces the global com-
municator used in the application (MPI_COMM_WORLD). By sim-
ply replacing the global communicator in such a way, FTI guaran-
tees that no message will ever be exchanged between application
processes and FT-managers within the application. Messages ex-
changed between application processes and FT-managers will be
generated only by FTI calls.

In the case of a failure, the user just needs to modify one pa-
rameter in the configuration file and launch the execution again.
FTI_Init() will then notice that the application needs to restart from
the last checkpoint. It will start by recreating the same topology
as previously saved and will check if there has been loss of data

due to a node hard failure. In such a case, the RS decoding will
be launched to regenerate the lost data. In the exceptional case of
losing more data than tolerated by the L2 scheme, FTI will then
search for the last checkpoint saved in the PFS.

Finally, FTI_Finalize()checks that all the FT-managers have fin-
ished their job and free all the resources. For the evaluation done in
section 5.4 we added FTI support to a version of SPECFEM3D ini-
tially capable of doing a basic application-level checkpoint to PFS.
The coding process took less than one hour and only a few tens of
extra code lines were added.

4.2 Toward auto-tuning
Our algorithm has been optimized by overlapping computation

and communications (See section 3.2). However, when the number
of communications is large, the overhead caused by the network la-
tency will be high. Thus, it is important to limit the number of com-
munications by selecting an appropiate block size. Since each ma-
chine is different and network performance changes significantly
from an architecture to another, it is difficult to select in advance a
block size that matches perfectly the network performance of every
supercomputer. One will need to try several different block sizes to
get best performance.

FTI has a set of commands to automate this process. The library
tries a wide range of block sizes to find the block size with the
fastest encoding. Figure 3 shows an example of this auto-tuning
process on TSUBAME2.0. As we can see, the small blocks lead
to a slow encoding due to the overhead generated by the network
latency. From 2KB blocks, the encoding time starts to stabilize,
which means that the communications are totally hidden by the en-
coding computation despite the high network bandwidth of TSUB-
AME2.0 at 6.5GB/s effectively measured.

Figure 3: Reed-Solomon encoding time for different block sizes

Moreover, FTI also measures the local read and write perfor-
mance of the machine. Since we have integrated our model in the
core of FTI, the library can use the measured data to propose an
appropriate checkpoint frequency for a given checkpoint size per
node and group size. We are currently planning to add dynamic
reconfiguration to the library during the execution for applications
that have different workloads at different stages of the execution.

5. EVALUATION
Our evaluation is divided in three parts. In the first one, we

demonstrate the correctness and accuracy of the encoding and de-
coding performance of our model. The second part is related to
our reliability study (See section 3.5) and we present a short study
of the failure records of TSUBAME1 over the last 4 years. Fi-
nally, we evaluate the performance, scalability and efficiency of our
FTI library using SPECFEM3D. All our experiments were done on
TSUBAME2.0 with the configuration given in table 2.

Nodes 1408 High BW Compute Nodes
CPU 2 Intel Westmere-EP 2.93GHz 12Cores/node
Mem 55.8GB or 103GB (Total: 80.55TB)
GPU NVIDIA M2050 515GFlops, 3GPUs/node

(Total: 4224 NVIDIA Fermi GPUs)
SSD 60GB x 2 = 120GB (55.8GB node)

120GB x 2 = 240GB (103GB node)
(Total : 173.88TB)

Write speed : 360MB/s (RAID0)
Network Dual rail QDR IB (4GB/s x 2)

File system 5 DDN DFA10000 units (3 Lustre and 2 GPFS)
with 600 2TB HDDs each

Measured Lustre write troughput (10GB/s)
OS Suse Linux Enterprise + Windows HPC

Table 2: TSUBAME2.0 architecture

5.1 Performance model evaluation
The first step in our evaluation will be to demonstrate the cor-

rectness and accuracy of our performance model. The accuracy of
our performance model is important because it allows us to pre-
dict the encoding performance, which in turn is necessary to com-
pute an appropriate L2 checkpoint interval and theL1/L2 ratio. To
prove this, we will try to predict the checkpointing and encoding
time using the theoretical performance of the machine and our per-
formance model. Particularly, we will study how encoding time
evolves in relation with the parameters given in the formula 2 (See
section 3.2).

Figure 4: Checkpointing and encoding time in relation with the
number of nodes

(a) Checkpointing and encoding time
for different checkpoint sizes per node

(b) Checkpointing and encoding time
in relation with the group size

(c) Checkpoint encoding and decoding
performance

(d) Distribution of multiple nodes fail-
ures in TSUBAME1 and possible fu-
ture scenarios

(e) Reliability comparison between FTI
and SCR for different group sizes

(f) Reliability comparison between FTI
and SCR for two different scenarios

Figure 5: Performance model and reliability evaluation

In previous work [5], we showed the scalability of our encoding
algorithm with respect to the number of nodes, thus we start with
this evaluation on the new machine. As explained in section 4.2, the
library can determine by itself the best block size and the encoding
speed of the machine. For this evaluation, we use a block size
of 4KB and the encoding speed is around 25µs per block (e∗ z =
25µs). We fix the checkpoint size per node to 1GB and the group
size is 4 nodes. The write speed on local SSDs is given in table 2.

Using formula 2 and these specifications, we can expect a check-
point time of about 3s and an encoding time of about 25s, indepen-
dently of the number of nodes. Figure 4 shows that the measured
encoding work takes 30s in average with some slight variations. It
is normal for the measured encoding time to be slightly longer than
predicted by the model because of the traffic on the network. In our
model we do not take into account the slight fluctuations of the net-
work due to the traffic generated by the application. On the other
hand, the measured time to write the checkpoint on local SSDs is
shorter than the hardware specifications. This is normal aswell be-
cause the checkpoint size is not big enough to erase the buffering
effect.

Once we have verified the scalability in terms of number of nodes,
we stress our model to evaluate how the checkpoint and the encod-
ing time evolves in relation with the checkpoint size per node. We
use the same block size and group size as in the previous test. By
changing the checkpoint size per node we change the parameterh in
formula 2, thus the encoding time should increase linearly with re-
spect to the checkpoint size per node. Also, the checkpoint writing
time should evolve according to the write bandwidth of the SSDs.
Similarly to the previous test, the encoding time is slightly greater
than predicted by the model and the writing time slightly shorter, as

presented in figure 5a. However, we can see that the measured per-
formance matches pretty well the linear evolution expected. The
writing time in particular, changes from less than 1s for 100MB
to more than 20s for 10GB. We can see that the buffering effect
decreases rapidly when the checkpoint size increases, therefore ap-
proaching the hardware specifications.

Since the reliability of the system increases with the group size,
it is important to evaluate how the encoding performance evolves
with respect to the group size. Hence, we continue to stress our
model by measuring the checkpointing and encoding time for dif-
ferent group sizes. We fix the checkpoint size per node to 1GB
and we vary the group size from 4 to 16 nodes. As presented in
figure 5b, the checkpoint writing time remains constant since the
checkpoint size per node remains constant. In contrast, the encod-
ing time increases linearly with the group size as predicted by our
model. This was expected because the parity data generated by our
topology-aware RS encoding is directly related to the size of the
group (See section 3.1).

Finally, after stressing all the parameters of formula 2, we study
the decoding time. As explained in section 3.2, the decoding time
should be twice longer than the encoding time. Figure 5c shows the
measured and expected decoding time in comparison with the en-
coding time for three different checkpoint sizes per node (100MB,
500MB and 1000MB). As we can see, the measured decoding per-
formance matches very well the expected times.

5.2 Reliability comparison
In this section we study the reliability of our proposed topology-

aware RS technique (L2 of FTI) and compare it with the XOR tech-
nique used in L2 of SCR. For this purpose, we use formulas 3 and

-0.5

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000 1200 1400

D
is

pl
ac

em
en

t (
m

)

Time (s)

Vertical component

(a)

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000 1200 1400

D
is

pl
ac

em
en

t (
m

)

Time (s)

East component

(b)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0 200 400 600 800 1000 1200 1400

D
is

pl
ac

em
en

t (
m

)

Time (s)

North component

(c)

Figure 6: Synthetic seismograms of the three components of the displacement vector measured at the surface of the Earth at the
Hirono station in the Fukushima prefecture. The fact that some components of the displacement vector do not go back to zero after
the main wave fronts corresponds to the so-called ‘static offset’: the earthquake was so large that it permanently tilted the surface
of Japan.

4 and the parameters of table 1 (See section 3.5). The number of
failures tolerated per groupt is 1 for SCR andk/2 for FTI.

First, we compute the probability of a failure ofx nodes (Pr(x))
striking the system. The best way to compute it is by studying fail-
ure traces of supercomputers. We analyzed a total of 1280 failures
that occurred in TSUBAME in the last 4 years. This list of failures
is available online [46]. From this list we noticed that less than 5%
of failures affected more than one node. The failures affecting sev-
eral nodes simultaneously could affect from 2 to sometimes more
than 10 nodes, following the distributionObservedin figure 5d.

In order to establish a plausible scenario for future machines, we
proposeScenario 1as an optimistic case, in which the average of
multiple node failures will remain the same as in previous clusters.
However, the failure records we studied are related to a machine
that was, in this context, small at that time (from 2006 to 2010).
Indeed, TSUBAME1 was composed of 655 nodes, which is almost
one half of the current TSUBAME2.0 size and even more in com-
parison with future post-petascale systems. Future large and dense
supercomputers may suffer correlated failures in a more common
pattern (See section 2.2). Thus, we propose a second scenario (Sce-
nario 2) in which almost 20% of failures will affect several nodes
simultaneously. The failure distributions of both scenarios are plot-
ted in figure 5d.

In figure 5e, we studied the influence of the group size in relation
with the probability of catastrophic failure for a system similar to
TSUBAME2.0 (about 1000 nodes) assuming the optimistic case of
Scenario 1. The first thing that we notice is that both libraries are
very reliable and have a very low probability of catastrophic fail-
ure for a low rate of multiple node failures. Nonetheless, there are
some important discrepancies between both libraries. Not surpris-
ingly, the reliability of FTI increases by several orders of magni-
tude by only increasing the group size. This is normal because in
our model reliability is directly linked to the group size. In con-
trast, while using XOR, reliability decreases when the group size
increases because the probability of two or more failures occurring
in the same XOR set increases. Then we can see how the inher-
ent encoding technique can impose some limitations. Even for the
smallest group size (4 nodes), the topology-aware RS encoding of
FTI guarantees about two orders of magnitude more reliability than
the XOR encoding.

Although this is an important difference, both libraries seem to
guarantee a low enough probability of catastrophic failure. Then,
we decided to stress the comparison by studying how both libraries
evolve in relation with the multiple node failure rate. The results

are shown in figure 5f. As presented, an increase of 15% in the
multiple node failures rate increases the probability of catastrophic
failure of both libraries L2 techniques by almost one order of mag-
nitude. This proves that both techniques are sensitive to the failures
rate and failures patterns, but FTI can benefit from its improved re-
liability.

Moreover, FTI not only proposes an FT-enhanced L2 technique
but also a low cost encoding thanks to the FT-dedicated threads.
FTI guarantees a high reliability with a low overhead for large scale
HPC as presented in section 5.3.

5.3 Simulating the March 11th Mw9.0 Tohoku
Japan earthquake

In an effort to extend our evaluation with a functional test of FTI
in a real case simulation with a production level application, we de-
cided to simulate the devastating Mw9.0 Tohoku Japan earthquake
that struck the northeast part of the island on March 11th, 2011. The
simulation is done with SPECFEM3D on TSUBAME2.0 using an
input model that describes the source fault.

SPECFEM3D is used by more than 300 research groups in the
world for a large number of applications, for example to model
the propagation of seismic waves resulting from earthquakes, seis-
mic acquisition experiments carried out in the oil industry, or lab-
oratory experiments with ultrasounds in crystals. This application
won the Gordon Bell SuperComputing award for Best Performance
[37] for a calculation of seismograms in the whole 3D Earth down
to periods of approximately 5 seconds, carried out at 5 teraflops
(sustained) on 1944 processors using 14.6 billion degrees of free-
dom stored in 2.5 terabytes of memory on the Earth Simulator, the
fastest computer in the world at that time (2002).

For the source model, we apply waveform inversion [52,53] to
obtain slip distribution in the source fault at the 2011 Tohoku, Japan
earthquake in the same manner as Nakamura et al. [56]. We use
broadband seismograms of IRIS GSN and IFREE OHP seismic sta-
tions with epicentral distance between 30 and 100 degrees. The
broadband original data are integrated into ground displacement
and band-pass filtered in the frequency band 0.002-1 Hz. We use
the velocity structure model of the earth IASP91 [51] to calculate
the wavefield near the source and stations. We assume that the
strike of the fault plane is 201 degree and the dip angle is 9 de-
gree, based on the Global Centroid Moment Tensor model of the
earthquake source. The length of a subfault is 20 km along strike.
The assumed fault length is 440 km in total, consistent with the
aftershock distribution.

(a) Strong scalability (b) Weak scalability

Figure 7: FTI Scalability

The nonnegative least-squares method [55] is employed for con-
straining the rake angle in the waveform inversion. The results of
the inversion show the bilateral rupture to the northeast and the
southewest with two main asperities along the fault; maximum slip
is of around 40 m with the reverse fault mechanism approximately
100 km northeast of the epicenter and another large slip with re-
verse fault mechanism at 100 km southeast of the epicenter. The
total amount of released seismic moment corresponds to moment
magnitudeMw = 9.1. We calculate synthetic seismograms with
this source propagation model for a realistic 3D Earth model us-
ing the spectral-element method [54, 57]. At this moment, it is not
possible to compare the synthetics with the observed seismograms
because the seismograms from Japanese stations are not still avail-
able due to the network trouble after the earthquake. However, as
we can observe in figure 6b, the synthetic seismogram for the Hi-
rono seismic recording station located in the Fukushima prefecture,
the E component shows about 2m static displacement to the East,
which seems to be consistent with the observed crustal deformation
caused by this earthquake. Figures 6c and 6a show the other two
components at the same station.

Because of the difficulty of determining a source input model,
we only could launch several high resolution simulations to demon-
strate the source model accuracy. In the following months we plan
to make more experiments using the new earthquake source model
and to launch a large simulation on the full machine to evaluate the
performance of FTI at larger scale, but also to create a high reso-
lution movie of the seismic waves generated by the earthquake in
order to better understand what happened in the Tohoku region of
Japan on March 11th, 2011.

5.4 FTI scalability study with SPECFEM3D
In order to demonstrate the efficiency and scalability of FTI we

decided to evaluate it at large scale with SPECFEM3D. Recently,
SPECFEM3D was ported to GPU clusters using CUDA [47, 48],
so it can be used in hybrid systems such as TSUBAME2.0. It is
important to notice that such seismic simulations do not need dou-
ble precision and perform their runs in single precision [47]. Also,
we want to highlight that SPECFEM3D is a memory-bound appli-
cation, as any finite difference or finite element code; this is in-
trinsically related to the fact that in such numerical methods few

operations are performed per grid point, and thus the cost comes
mostly from memory accesses [47, 48].

First, we start with a strong scalability test in which we evaluate
the performance of SPECFEM3D in three cases: no checkpoint-
ing, checkpointing with FTI (L2) and checkpointing on Lustre [13].
Since the problem size is fixed, the memory used (and therefore the
checkpoint size) per GPU decreases when the number of GPUs in-
creases. In this experiment, for the FTI tests all the checkpoints
were done with the L2 of FTI, thus we do not take advantage of
the multi-level scheme of FTI at this point. Since checkpoint size
decreases, we also decrease the checkpoint interval in order to de-
crease the recovery cost in case of failure. All the checkpoints are
done at the application level and we checkpoint only the strictly
necessary data in order to restart the execution; this corresponds to
about 20% of the memory used by the application.

As we can see in figure 7a, SPECFEM3D strong-scales well
from 5 TFlops on 48GPUs to almost 23 TFlops on 384GPUs with-
out checkpointing. FTI follows closely this progression by causing
only about 4% of overhead for 384GPUs. In contrast, checkpoint-
ing to Lustre becomes prohibitively costly at high frequencies. Per-
formance was measured using PAPI to measure the floating point
operations [49] and each dot in the figure is the average of 5 runs.

To evaluate the overhead of FTI at large scale, we stressed even
more our library by weak-scaling to more than 1000 GPUs. In this
second experiment, we populate the GPUs memory with 2.1GBs
of data, out of 2.6GBs available for the user (12.5% is used for
ECC in Fermi GPUs [20]) and we keep the checkpoint interval
fixed to 6 minutes, which is the Young’s optimal checkpoint in-
terval for a MTBF of 12 hours and a L1 checkpoint of 2 seconds.
Then, we run SPECFEM3D for several configurations: The first
one is without checkpoint (No ckpt.); the second one is check-
pointing to the local SSDs without any encoding (L1); the third
one is using FTI, thus in addition to the local checkpoint, every 2
checkpoints FTI will use the RS encoding proposed in our model
(FTI-L1,L2); the fourth one is similar to the previous one but in ad-
dition every 6 checkpoints the latest checkpoint files are flushed to
Lustre (FTI-L1,L2,L3); and finally checkpointing with BLCR on
Lustre (BLCR+Lustre). Although there are some ongoing works
[36] to make it possible, BLCR cannot currently checkpoint GPU-
accelerated systems. Hence, we emulate it by writing 2.1GBs of

data per process (therefore per GPU) to Lustre in the same way
BLCR would do it. It is important to highlight that BLCR, as any
other kernel-level checkpoint, will save the complete memory of
every process, creating a 5 times larger checkpoint.

In figure 7b, we can see that SPECFEM3D has an almost perfect
weak scaling, from 43TFlops to 117TFlops on 1152GPUs for the
No ckpt. test. Also, in the figure the L1 results are actually hidden
by the FTI-L1,L2 results. Indeed, both scenarios achieve almost
identical results causing about 8% overhead in comparison with
the No ckpt. case. This means, that the RS encoding done at L2
is completely hidden thanks to the FT-dedicated threads. The L1
checkpoints, capable of tolerating transient failures, are done be-
tween two L2 checkpoints while the FT-threads are still encoding
the previous, more reliable, checkpoint. The FTI-L1,L2,L3 scheme
adds an extra 3% overhead due to Lustre writing performance. Fi-
nally, the BLCR+Lustre scheme imposes an always larger and pro-
hibitive overhead as the size of the problem increases. For each run
we let the application run between 30 and 40 minutes and every
point in the figure is the average of 3 runs.

At this point, we have achieved over 100TFlops of sustained
performance with a production-level scientific application such as
SPECFEM3D, on an hybrid supercomputer such as TSUBAME2.0
and checkpointing with our library FTI every 6 minutes (high fre-
quency checkpointing). In the coming months, we expect to launch
a larger evaluation on the full machine.

6. RELATED WORK
Some applications can benefit from algorithm-based checkpoint-

free techniques [27]. Such techniques are very efficient and should
be applied whenever possible. However, many applications need
other resiliency schemes. CR is the most popular technique in HPC
and can be implemented at the kernel level [21, 22, 23, 24] or at
user level [25]; and it can include optimizations such as incremen-
tal checkpointing [25] or speculative checkpointing [26]. Unfortu-
nately, such optimizations will have different results depending on
the application. Diskless checkpointing [14, 15, 19, 28, 29, 30] was
proposed by Plank et al. as a solution to avoid the I/O bottleneck;
however several challenges, such as how to optimize the encoding
algorithms and how to improve the time and memory efficiency of
that technique, were important points against its adoption.

In this paper, we extend our previous work by proposing a low-
overhead high-frequency multi-level checkpoint scheme and its per-
formance model, and we evaluate its correctness. Also, we conduct
a reliability study and we compare the reliability of two different
erasure codes used for fault tolerance, in two different scenarios.
In addition, we implement a Fault Tolerance Interface FTI, and
we evaluate its performance using a real case scenario with a pro-
duction level application such as SPECFEM3D on TSUBAME2.0.
Furthermore, we stress our evaluation by scaling, for the first time,
to over 1000 GPUs, achieving over 100TFlops of sustained perfor-
mance while checkpointing with FTI at a high frequency.

PLFS[4] is a parallel log structured file system that enhances the
underlying PFS performance for some access patterns by remap-
ping the application data layout. This is an important optimization
for those applications with special data access patterns. However,
the applications still limited by the upper bound PFS performance.
We believe this work can be complemented with our library. In-
deed, PLFS is capable of transforming a N-1 write access pattern
into a N-N write access pattern by using a container structure im-
plemented as a hierarchical directory tree. This feature could be
adapted to systems with non-volatile storage on the compute nodes
where each process file would be stored locally, increasing signif-
icantly the writing performance. By coupling this with FTI, one

can guarantee the files availability even in case of multiple hard
failures.

Dong et al. proposed an interesting hybrid checkpoint model
using PCRAM [2]. While this work seems very promising, we be-
lieve some of the assumptions and requirements may be relaxed if
that technology is coupled with our model. For instance, one could
still use hard disk drives (HDDs) in the PFS (i.e. 3DPCRAM +
HDD) by using our topology-aware RS encoding technique. Since
the encoding time is efficiently hidden by the FT-dedicated threads,
the erasure codes will not be an obstacle for performance.

Finally, Moody et al. proposed a multi-level checkpoint and a
probabilistic Markov model [1] that describes the performance of
such multi-level scheme. That multi-level technique is probably
the closest one to our work. In fact, the techniques proposed in our
model are somehow based on several results presented in that work,
such as the Markov model and the adaptation for disk-less systems
proposed. Nonetheless, there are several important differences.We
propose a reliability-enhanced L2 that can match the performance
of a L1 checkpoint. In addition, we present this work in the con-
text of hybrid systems and we exploit some of the characteristics
of GPU computing to improve the performance of our library. We
present an evaluation with SPECFEM3D on TSUBAME2.0 (over
1000 GPUs) in which we achieve over 100TFlops of sustained per-
formance while checkpointing at high frequency. These two works
are also complementary, SCR could implement our FT-dedicated
thread scheme as an optional feature to enhance the L2 checkpoint
performance. Also, we plan to add to FTI the XOR encoding used
in SCR as an intermediary level between the L1 checkpoint and
the topology-aware RS encoding, resulting in a 4-level checkpoint
library. We believe that by complementing XOR L2 with RS L3
checkpointing we can further improve performance while reducing
the need for checkpointing to the PFS.

7. CONCLUSIONS
In this work we have proposed a highly reliable technique based

on a topology-aware RS encoding. Also, we have exploited some
characteristics of GPU computing through which many GPU ap-
plications are capable of spawning one extra FT-dedicated thread
per node in order to improve checkpoint performance. We have
integrated both techniques in a multi-level checkpoint model that
we have implemented in our FTI library and we have conducted an
exhaustive study of correctness of our preformance model and the
reliability of our library.

Moreover, we have conducted for the first time a large scale
evaluation of such a multi-level technique with a production level
scientific application on an hybrid platform. Our evaluation with
SPECFEM3D on TSUBAME2.0 shows that FTI imposes only 8%
of checkpoint overhead while running at over 0.1 petaflops and
checkpointing every 6 minutes.

As future work, we plan to add XOR encoding to our library
and continue to develop more auto-tuning strategies, such as dy-
namic behavior for applications with different workloads at differ-
ent stages of the execution.

8. ACKNOWLEDGMENTS
This work was supported in part by the JSPS, the ANR/JST

FP3C project, and by the INRIA-Illinois Joint Laboratory for Petas-
cale Computing.

9. ADDITIONAL AUTHORS
Additional author: Takeshi Nakamura, Affiliation: JAMSTEC,

email: t_nakamura {at} jamstec.go.jp

10. REFERENCES
[1] A. Moody, G. Bronevetsky, K. Mohror, B. R. de Supinski,

Design, Modeling, and Evaluation of a Scalable Multi-level
Checkpointing System. In ACM/IEEE International
Conference for High Performance Computing, Networking,
Storage and Analysis, New Orleans, 2010

[2] X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann, Y.
Xie. Leveraging 3D PCRAM Technologies to Reduce
Checkpoint Overhead for Future Exascale Systems. In
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, Portland,
2009.

[3] Z. Cheng, J. Dongarra, A scalable Checkpoint Encoding
Algorithm for Diskless Checkpointing. Proceedings of the
11th IEEE High Assurance Systems Engineering
Symposium, HASE 2008, Nanjing, China, December, 2008.

[4] J. Bent, G. Gibson, G. Grider, B. McClelland, P.
Nowoczynski, J. Nunez, M. Polte, and M. Wingate, Plfs: A
checkpoint filesystem for parallel applications. In
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, Portland,
2009.

[5] L. Bautista-Gomez, N. Maruyama, A. Nukada, F. Cappello,
S. Matsuoka, “Low-overhead diskless checkpoint for hybrid
computing systems”, International Conference on High
Performance Computing, Goa, India, December 2010.

[6] L. Bautista-Gomez, N. Maruyama, F. Cappello, S. Matsuoka,
“Distributed Diskless Checkpoint for large scale systems”,
IEEE/ACM International Symposium on Cluster, Cloud and
Grid computing (CCGrid2010), Melbourne, Australia, May
2010.

[7] The Top 500 http://www.top500.org/
[8] The Green 500 http://www.green500.org/
[9] F. Cappello, Fault tolerance in Petascale/Exascale systems:

current knowledge, challenges and research opportunities
International Journal on High Performance Computing
Applications, SAGE, Volume 23, Issue 3, 2009.

[10] B. Schroeder, E. Pinheiro, W. Weber. DRAM errors in the
wild: A Large-Scale Field Study. In Proceedings of the 11th
international joint conference on Measurement and modeling
of computer systems (SIGMETRICS), ACM, New York, NY,
USA, 2009.

[11] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J.
Small, J. Zelenka, and B. Zhou. Scalable performance of the
panasas parallel file system. In FAST’08: Proceedings of the
6th USENIX Conference on File and Storage Technologies,
pages 1–17, Berkeley, CA, USA, 2008. USENIX
Association.

[12] F. Schmuck , R. Haskin, GPFS: A Shared-Disk File System
for Large Computing Clusters, Proceedings of the
Conference on File and Storage Technologies, p.231-244,
January 28-30, 2002

[13] S. Microsystems. Lustre file system, October 2008
[14] J. S. Plank, Jerasure: A Library in C/C++ Facilitating

Erasure Coding for Storage Applications, Technical Report
CS-07-603, University of Tennessee, September, 2007.

[15] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, Z.
Wilcox-O’Hearn. A Performance Evaluation and
Examination of Open-Source Erasure Coding Libraries for
Storage. In Proceedings of the Seventh USENIX Conference
on File and Storage Technologies (FAST), San Francisco,
CA, 2009.

[16] S. Matsuoka, The Road to TSUBAME and beyond, Petascale
Computing: Algorithms and Applications, Chapman & Hall
Crc Computational Science Series, 2008, pp. 289-310.

[17] A GPU Accelerated Storage System, Abdullah Gharaibeh,
Samer Al-Kiswany, Sathish Gopalakrishnan, Matei Ripeanu,
IEEE/ACM International Symposium on High Performance
Distributed Computing (HPDC 2010), Chicago, IL, June
2010.

[18] A. Petitet, R. Whaley, J. Dongarra and A. Cleary. HPL – a
portable implementation of the high performance Linpack
benchmark for distributed computers.
http://www.netlib.org/benchmark/hpl

[19] NA Kofahi, S Al-Bokhitan, A Al-Nazer, On Disk-based and
Diskless Checkpointing for Parallel and Distributed Systems:
An Empirical Analysis - Information Technology Journal,
v.4 n.4, p.367-376, 2005.

[20] http://www.nvidia.com/object/fermi_architecture.html
[21] J. Duell, P. Hargrove and E. Roman, Requirements for Linux

Checkpoint/Restart Lawrence Berkeley National Laboratory
Technical Report LBNL-49659, 2002.

[22] E. Roman, A Survey of Checkpoint/Restart Implementations
Lawrence Berkeley National Laboratory Technical Report
LBNL-54942, 2003.

[23] J. Duell, P. Hargrove and E. Roman, The Design and
Implementation of Berkeley Lab’s Linux Checkpoint/Restart
Lawrence Berkeley National Laboratory Technical Report
LBNL – 54941, 2002.

[24] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J.
Duell, P. Hargrove and E. Roman, The LAM/MPI
checkpoint/restart framework: system-initiated
checkpointing Proc. Los Alamos Computer Science Institute
(LACSI) Symp. Santa Fe, New Mexico, USA, October 2003.

[25] J. S. Plank, M. Beck, G. Kingsley and K. Li, Libckpt:
Transparent checkpointing under UNIX. In Proceedings of
the USENIX, Technical Conference, 213—223, 1995.

[26] S. Matsuoka, I. Yamagata, H. Jitsumoto, H. Nakada,
Speculative Checkpointing: Exploiting Temporal Affinity of
Memory Operations, HPC Asia 2009, pp. 390–396, 2009.

[27] Z. Chen and J. J. Dongarra. Algorithm-Based
Checkpoint-Free Fault Tolerance for Parallel Matrix
Computations on Volatile Resources. In 20th International
Parallel and Distributed Processing Symposium (IPDPS),
Rhodes Island, Greece, april 2006.

[28] J. Plank, K. Li, M. A. Puening, Diskless Checkpointing,
IEEE Transactions on Parallel and Distributed Systems, v.9
n.10, p.972-986, October 1998.

[29] J. S. Plank and L. Xu, Optimizing Cauchy Reed-Solomon
Codes for Fault-Tolerant Network Storage Applications,
NCA-06: 5th IEEE International Symposium on Network
Computing Applications, Cambridge, MA, July, 2006.

[30] C. Lu, Scalable diskless checkpointing for large parallel
systems, PhD. Thesis, University of Illinois at
Urbana-Champaign, IL, 2005.

[31] A. Moody, G. Bronevetsky, Scalable I/O Systems via
Node-Local Storage: Approaching 1 TB/sec File I/O. DOE
technical report, 2009.

[32] S. Matsuoka, T. Aoki, T. Endo, A. Nukada, T. Kato, A.
Hasegawa, GPU-accelerated computing-from hype to
mainstream, the rebirth of vector computing. Journal of
Physics: Conference Series, v.180, no.012043, 2009.

[33] B. Schroeder , G. A. Gibson, Understanding failures in

petascale computers, SciDAC, Journal of Physics:
Conference Series, v.78, no.012022, 2007.

[34] M. Curry, L. Ward, T. Skjellum, and R. Brightwell.
Accelerating reed-solomon coding in raid systems with gpus.
In International Parallel and Distributed Processing
Symposium, April 2008.

[35] W. D. Gropp, R. Ross, and N. Miller. Providing efficient I/O
redundancy in MPI environments. Lecture Notes in
Computer Science, 3241:7786, September 2004.

[36] A. Nukada, S. Matsuoka, NVCR : A Transparent
Checkpoint-Restart Library for NVIDIA CUDA in
Proceedings at the International Heterogeneity in Computing
Workshop, Alaska, 2011. (To appear)

[37] D. Komatitsch, S. Tsuboi, C. Ji and J. Tromp, A 14.6 billion
degrees of freedom, 5 teraflops, 2.5 terabyte earthquake
simulation on the Earth Simulator, Proceedings of the ACM /
IEEE Supercomputing SC’2003 conference, November
2003.

[38] G. Grider, J. Loncaric, and D. Limpart, Roadrunner System
Management Report, Los Alamos National Laboratory, Tech.
Rep. LA-UR-07-7405, 2007.

[39] R. A. Oldfield, S. Arunagiri, P. J. Teller et al., Modeling the
Impact of Checkpoints on Next-Generation Systems, in
MSST’07. Proceedings of the 24th IEEE Conference on
Mass Storage Systems and Technologies, 2007, pp. 30-46.

[40] S. Y. Borkar, Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability and
Degradation, IEEE Micro, vol. 25, no. 6, pp. 10-16, 2005.

[41] D. Reed, High-End Computing: The Challenge of Scale,
Director’s Colloquium, LANL, May 2004.

[42] K. Barker, K. Davis, A. Hoisie, D. Kerbyson, M. Lang, S.
Pakin, J. Sancho, Entering the petaflop era: the architecture
and performance of Roadrunner, Proceedings of the 2008
ACM/IEEE conference on Supercomputing, November
15-21, 2008, Austin, Texas.

[43] B. Schroeder, G. A. Gibson, A large-scale study of failures in
high-performance computing systems, Proceedings of the
International Conference on Dependable Systems and
Networks (DSN’06), p.249-258, June 25-28, 2006.

[44] http://www.open-mpi.org/
[45] John W. Young. 1974. A first order approximation to the

optimum checkpoint interval. Commun. ACM 17, 9
(September 1974), 530-531. DOI=10.1145/361147.361115
http://doi.acm.org/10.1145/361147.361115

[46] http://www.gsic.titech.ac.jp/ ccwww/in-
dex.php?www&&&/tgc/trouble_list.html

[47] D. Komatitsch, D. Michéa, G. Erlebacher, Porting a
high-order finite-element earthquake modeling application to
NVIDIA graphics cards using CUDA, Journal of Parallel and
Distributed Computing, vol. 69(5), p. 451-460, doi:
10.1016/j.jpdc.2009.01.006, 2009.

[48] D. Komatitsch, G. Erlebacher, D. Göddeke, D. Michéa,
High-order finite-element seismic wave propagation
modeling with MPI on a large GPU cluster, Journal of
Computational Physics, vol. 229(20), p. 7692-7714, doi:
10.1016/j.jcp.2010.06.024, 2010.

[49] http://icl.cs.utk.edu/papi/
[50] http://www.geodynamics.org/cig/software/specfem3d-globe
[51] B. Kennet, E. Engdahl, Traveltimes for global earthquake

location and phase identification. Geophys. J. Int., 105,
429-465, 1991.

[52] M. Kikuchi, H. Kanamori, Inversion of complex body waves.
III, Bull. Seismol. Soc. Am., 81, 2335-2350, 1991.

[53] M. Kikuchi, H. Kanamori, Note on Teleseismic Body-Wave
Inversion Program, 2003.
http://www.eri.u-tokyo.ac.jp/ETAL/KIKUCHI/

[54] D. Komatitsch, J. Ritsema, J. Tromp, The spectral-element
method, Beowulf computing, and global seismology, Science
298, 1737-1742, 2002.

[55] C. Lawson, R. Hanson, Solving Least Squares Problems,
Prentice-Hall, New Jersey, 340 pp, 1974.

[56] T. Nakamura, S. Tsuboi, Y. Kaneda, Y. Yamanaka, Rupture
process of the 2008 Wenchuan, China earthquake inferred
from teleseismic waveform inversion and forward modeling
of broadband seismic waves, Tectonophysics, vol. 491,
72-84, 2010.

[57] S. Tsuboi, D. Komatitsch, C. Ji, J. Tromp, Broadband
modelling of the 2002 Denali fault earthquake on the Earth
Simulator, Phys. Earth Planet. Inter. 139, 305-312, 2003.

