
P1: ZBU

Mathematical Geology [mg] pp642-matg-453418 October 22, 2002 13:12 Style file version June 25th, 2002

Mathematical Geology, Vol. 34, No. 7, October 2002 (C© 2002)

A New Method for Ck-Surface Approximation From
a Set of Curves, With Application to Ship Track Data

in the Marianas Trench1

Dominique Apprato,2 Christian Gout,3

and Dimitri Komatitsch 4

We introduce a surface approximation technique to address the problem of fitting a surface to a given
set of curves. The originality of the method lies in its ability to take into account the continuous aspect
of the data, and also in the possibility to arbitrarily select the regularity (C0, C1, or higher) of the
approximant obtained. We demonstrate the efficiency of the approach by constructing a bathymetry
map of the Marianas trench based upon a set of SONAR (SOnic Navigation And Ranging) bathymetry
ship track data.
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INTRODUCTION

The problem of constructing a smooth surface from a given set of curves appears
in many instances in geophysics and geology. One can think for instance of the
problem of reconstructing seafloor surfaces from SONAR ship track bathymetry
data, as is studied in this paper. Another example is the construction of a Digital
Elevation Model from a given set of topography isolines (isolevels). Classical
algorithms used to solve this class of problems usually select points on the curves to
define a Lagrange data set, and subsequently make use of classical spline functions
(e.g., de Boor, 1978; Laurent, 1972; Schumaker, 1981), bivariate splines (Lai and
Schumaker, 1998, 1999; von Golitschek and Schumaker, 1990), or spline functions
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in Hilbert spaces (e.g., Arcang´eli, 1986; Duchon, 1977). In the available literature,
to our knowledge there are no classical methods that explicitly take into account
the continuous aspect of the curves that constitute the data set.

In this paper, we propose an approximation method that honors the continuous
aspect of the data. We use a fidelity criterion to the data, of integral type, which
is based upon aL2-norm (e.g., Apprato and Arcang´eli, 1991). In this respect, the
method is related to the surface approximation technique introduced in the context
of partial data sets by Apprato, Gout, and S´enéchal (2000) and Apprato and others
(2000).

DEFINITION OF THE PROBLEM

The problem of surface approximation from a given set of curves can be posed
as follows: from a finite set of open subsetsFj , j = 1, . . . , N (the bathymetry ship
track curves in our case) in the closure of a bounded nonempty open setÄ ⊂ R2,
and from a functionf defined onF = ∪N

j=1Fj , construct a regular function8 on
Ä approximatingf on F , i.e.:

8|F ' f|F . (1)

We can assume thatÄ is a connected set, with a Lipschitz-continuous bound-
ary (following the definition of Necas, 1967), that for any integerj , with j =
1, . . . , N, Fj is a nonempty connected subset inF , and that, for simplicity,f is
the restriction onF of a function, still denoted byf , that belongs to the usual
Sobolev spaceHm(Ä), with m≥ 2. We also assume that the approximant8 be-
longs toHm(Ä) ∩ Ck(Ǟ), with k = 1 or 2, whereǞ is the closure ofÄ. The main
interest of such a regularity for8 is that it allows one to obtain a final surface that
can later be used directly as an input model in a different application, such as ray
tracing, image synthesis, or numerical simulation (e.g., Komatitsch and Tromp,
1999; Komatitsch and Vilotte, 1998) for instance.

When m> k+ 1, the interpolation problem8|F = f|F has an infinity of
solutions because of the continuous embedding ofHm(Ä) in Ck(Ǟ). After dis-
cretization of the data set, we can obtain a solution using for instance the spline
approximation developed by Duchon (1977). Unfortunately, Duchon’s theory leads
to linear systems whose order increases rapidly with the number of data points,
which makes the method inefficient in the case of large data sets. Franke (1982)
proposed to use overlapping segments to overcome this problem. We can also ob-
tain a solution using an interpolation method. Let us define, for anyv ∈ Hm(Ä),
ρv = v|F , and let us introduce the convex setK = {v ∈ Hm(Ä), ρv = ρ f }. Then
we consider the minimization problem of findingσ ∈ K such that for anyv ∈ K ,

|σ |m,Ä ≤ |v|m,Ä, (2)
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where

|v|m,Ä =
(∑
|α|=m

∫
Ä

(∂αv)2 dx

)1/2

, (3)

withα = (α1, α2) ∈ N2, |α| = α1+ α2, x = (x1, x2), and∂αv = ∂ |α|v
∂x

α1
1 ∂x

α2
2

. If L2(F)

is equipped with the usual norm

‖v‖0,F =
(

N∑
j=1

∫
Fj

v2(x) dx

)1/2

, (4)

and under the hypothesis that for anyp ∈ Pm−1(F̄), p|F = 0 ⇒ p ≡ 0, we know,
based upon a compactness argument (Necas, 1967), that the function‖|·‖|
defined by

‖|u‖| = (‖ρu‖20,F + |u|2m,Ä
)1/2

(5)

is a norm onHm(Ä), which is equivalent to the usual norm

‖u‖m,Ä =
(∑
|α|≤m

∫
Ä

(∂αv)2 dx

)1/2

. (6)

Then the solutionσ of the interpolation problem (2) is the unique element of
minimal norm‖|·‖| in K that is convex, nonempty, and closed inHm(Ä). Hence
we could take the solution8 = σ when m> k+ 1. Unfortunately, it is often
impossible to computeσ using a discretization of problem (2), because in a finite
dimensional space, it is generally not possible to satisfy an infinity of interpolation
conditions. Therefore, to take into account the continuous aspect of the dataf|F ,
we instead choose to define the approximant8 as a fitting surface on the set:

{(x1, x2, x3) ∈ R3, x3 = f (x1, x2), (x1, x2) ∈ Fj , j = 1, . . . , N}. (7)

The use of spline functions is common in surface approximation (e.g., Mitasova
and Mitas, 1993; Wahba, 1990; Wessel and Bercovici, 1998). In this paper, we
propose to construct a “smoothingDm-spline,” as defined by Arcangeli (1986),
that will be discretized in a suitable piecewise-polynomial space. The use of such
spline functions has been shown to be efficient in the context of geophysical
applications such as Ground Penetrating Radar data analysis (Apprato, Gout, and
Sénéchal, 2000) or the creation of Digital Elevation Models describing topography
(Gout and Komatitsch, 2000). Comparisons between spline functions and classical
kriging can be found in Dubrule (1984).
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DESCRIPTION OF THE METHOD

Let us in this section present the theoretical aspects of the method. We first
introduce a functionalJε, that we shall minimize, defined onHm(Ä) by

Jε(v) = ‖v − f ‖20,F + ε|v|2m,F , (8)

whereε|v|2m,F is a smoothing term,ε > 0 being a classical smoothing parameter.
The key idea here is that the fidelity criterion to the data‖v − f ‖20,F honors their
continuous aspect. We now need to numerically estimate thisL2-norm, which is
done using a quadrature formula. In this regard, the approach is quite different
from more classical techniques that usually simply make use of a large number of
data points onF in order to solve the approximation problem.

For any integerj , j = 1, . . . , N, and anyη > 0, let {ζi }1≤i≤L be a set of
L = L( j ) distinct pointsζi = ζi ( j ) of F̄ j such that

max
1≤i≤L−1

δ(ζi , ζi+1) ≤ η, (9)

whereδ is the Euclidean distance inR2. This relation implies that the distance
between two consecutiveζi is bounded byη; it also allows one to study the con-
vergence of the approximation whenη→ 0. Theζi will also be the nodes of a
numerical integration formula. Let us also introduce a set{λi }1≤i≤L of real num-
bers (that will be the weights of a quadrature formula) such thatλi = λi ( j ) > 0,
and let us define, for anyv ∈ C0(F̄j ), ∀η > 0,

`
η

j (v) =
L∑

i=1

λi v(ζi ), (10)

and for anyv ∈ C0(F̄)

`(v) =
N∑

j=1

`
η

j (v). (11)

In all that follows, we will suppose that, for anyv ∈ Hm(F̄), any η > 0, there
existsC > 0 such that ∣∣`ηj (v2)− ‖v‖20,Fj

∣∣ ≤ Cη‖v‖2m,Ä. (12)

When this hypothesis is satisfied, one can consider` as a theoretical quadrature
formula for‖·‖20,F . Note that if we have only one curve (i.e.,N = 1 above) and
F is represented by a unique equationx2 = a(x1) : x1 ∈ 1, and if we define the
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norm‖·‖0,F by

‖v‖20,F =
∫
1

v2(x1,a(x1))(1+ a′2(x10))1/2 dx1, (13)

then we can also define

`(v) = 1

2
δ(ξ1, ξ2)v(ξ1)+ 1

2

L−1∑
i=2

[δ(ξi−1, ξi )+ δ(ξi , ξi+1)]v(ξi 1)

+ 1

2
δ(ξL−1, ξL )v(ξL ), (14)

and verify that̀ (v) is a quadrature formula for the curvilinear integral
∫

F v(x) ds.
Note also that in most applications theFj are polygonal curves, and one can,
therefore, use a classical quadrature formula (e.g., Gout and Guessab, 2001).

Let Ä̃ be a bounded polygonal open set inR2 such thatÄ ⊂ Ä̃, and let
us define a typical sizeh and a mesh sizehK such that for anyh > 0, Q̃h is a
quadrangulation on̄̃Ä constructed using elementsK whose sizehK is smaller
thanh (Fig. 1). Let us also consider the subsetÄh that is the interior of the union
of the rectanglesK of Q̃h such thatK ∩Ä 6= ∅ (i.e., the union without its exterior

Figure 1. Definition of the setsÄ,Äh, andÄ̃ used in our numerical
algorithm.Ä is the open set on which we wish to define the approx-
imant, Ä̃ is a polygonal open set containingÄ, andÄh is a set of
quadrangles contained iñÄ and containingÄ. Note that there is no
good automatic way of choosing the typical size of the finite ele-
ments in the grid. The selection must be done manually based upon
the characteristics of the data set under study.
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edge). We then introduce the functionalJ̃ε,h defined onHm(Äh) by

J̃ε,h(vh) = `[(vh − f )2] + ε|vh|2m,Äh
, (15)

and consider the minimization problem of finding8 ∈ Hm(Äh) such that

J̃ε,h(8) = min
vh∈Hm(Äh)

J̃ε,h(vh). (16)

In order to compute a discrete approximant8, we could use any finite dimensional
space, but for practical reasons we choose a polynomial space. We could use a
Bézier-polynomial expansion, but instead we select a finite element representation
of 8 similar to that used in Apprato, Gout, and S´enéchal (2000), in order to be
able to choose the regularity that we want (C0, C1, or higher) for the solution. The
use of finite elements also allows us to obtain a very small sparse linear system
and makes the study of the approximation error easier.

For ε > 0 we consider the minimization problem of findingσηε,h, belonging
to a suitable finite element spaceVh included inHm(Äh), satisfying:

∀vh ∈ Vh, J̃ε,h(σε,h) ≤ J̃ε,h(vh), (17)

which is a discretization of (16). Let us mention that Apprato and Arcang´eli (1991)
showed that (17) is equivalent to the variational problem of findingσε,h ∈ Vh

satisfying, for anyvh ∈ Vh:

`(σε,hvh)+ ε(σε,h, vh)m,Ä = `( f vh), (18)

where (u, v)m,Ä =
∑
|α|=m

∫
Ä
∂αu∂αv dx. Apprato and Gout (1997) also showed

that problems (17) and (18) have the same unique solutionσε,h, called theVh-
discrete smoothing Dm-spline of f relative toF andε. Apprato and Arcang´eli
(1991) also validated the approach by assessing the accuracy of the approximant
obtained for several analytical examples having a known reference solution.

Denoting byM = M(h) the dimension ofVh and by (ϕ j )1≤ j≤M a basis ofVh,
let us then define

σε,h =
M∑

j=1

α jϕ j , (19)

with α j ∈ R, 1≤ j ≤ M . Introducing the matricesA = (`(ϕi , ϕ j ))1≤i, j≤M ,R =
((ϕi , ϕ j )m,Äh)1≤i, j≤M , andF = (` ( f ϕi ))1≤i≤M , we see that (18) is equivalent to
the problem of findingα = (α1, α2, . . . , αM ) ∈ RM solution of

(A+ εR) = F . (20)
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Regarding the numerical implementation of the algorithm, we choose to con-
structVh following the ideas of Ciarlet (1978). LetṼh be a finite element space con-
structed onQ̃h such thatṼh is a finite-dimensional subspace ofHm(Ä̃) ∩ Ck( ¯̃Ä),
with k = 1 or 2. Let us also defineVh as the vector space of the restrictions to
Äh of the functions ofṼh. As an approximation off , we can take the function
8 = σε,h| Ä that is inHm(Ä) ∩ Ck

(
Ǟ
)
. We now have to determine in which sense

8 is an approximation off . We use a result by Apprato and Arcang´eli (1991) who
proved thatσε,h converges tof on F by establishing the theoretical error formula:

∥∥σηε,h − f
∥∥2

0,F
≤ C

(
h2(m−1−θ ) + ηo(1)+ ε), (21)

whenε→ 0 andη→ 0, withθ ∈ ]0, 1[. Note that the parameterη comes from the
quadrature formula used to approximate‖·‖0,F . This inequation gives a theoretical
quantification of the error on the data setF . It is also possible to establish the
convergence of the approximation on the entire domainÄ when the number of
curvesFj tends to infinity (see Theorem 2.2 in Apprato and Gout, 1997 for a
similar kind of data sets).

In most problems one would want to solve in practice, the value ofm would
be either 2 or 3, allowing one to get either aC1 or a C2 approximant. When
m= 2, the finite elements used to solve the problem could typically be classi-
cal elements of classC1 or C2, such as the Argyris or the Bell triangle, or the
Bogner–Fox–Schmit quadrangle (e.g., Ciarlet, 1978). Whenm= 3, one could use
the same finite element of classC2 as form= 2. Whenm> 3, one could gen-
eralize the Bogner–Fox–Schmit quadrangle into a finite element of class Cm−1.
Other elements, such as isoparametric finite elements or rational finite elements
(e.g., Ciarlet, 1978) could also be used. Isoparametric finite elements are useful
to impose boundary conditions, but this is not usually a critical problem in the
context of surface approximation. On the other hand, the use of rational finite el-
ements would lead to expensive calculations in terms of CPU time, therefore, we
choose to use the Bogner–Fox–Schmit quadrangle of classC1, which allows us to
obtain aC1-approximant. Note that in certain classes of interpolation problems,
each data point must also be a node of the finite element grid, in which case the
use of triangles, as opposed to quadrangles, greatly facilitates the creation of a
suitable finite element mesh to numerically solve the problem. This is not the case
in a surface approximation problem, in which we can select the finite element
grid arbitrarily, which means that the use of quadrangles does not complicate the
numerical algorithm in any way.

Let us also underline that a very significant advantage of the method intro-
duced above is that we can arbitrarily select the degree of regularity of the final
approximant. We could construct, if needed, aCk-approximant withk ≥ 3 (which
could be useful in the context of image synthesis or ray tracing for example), by
simply using a finite element spaceVh ⊂ Hm(Ä) ∩ Ck(Ǟ).
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APPLICATION TO SURFACE RECONSTRUCTION FROM
BATHYMETRY SHIP TRACK DATA IN THE MARIANAS TRENCH

Detailed bathymetry maps are essential in several fields in geophysics, such as
oceanography and marine geophysics. Historically, over the past decades, research
vessels have collected a large number of depth echo soundings, also called SONAR
(for “SOnic Navigation And Ranging”) bathymetry ship track data. Many of these
measurements have been compiled to produce global bathymetry maps (e.g., Cana-
dian Hydrographic Office, 1981). As underlined for instance by Sandwell and
Smith (2001), in recent years tremendous advances in satellite altimetry have al-
lowed researchers to produce very detailed bathymetry maps independently from
satellite gravity field measurements. However, long-wavelength variations of the
depth of the ocean floor are difficult to constrain using satellite altimetry, and ship
track data are still often used instead for that purpose (Sandwell and Smith, 2001).
It is, therefore, of interest to address the issue of producing a bathymetry map
from a given set of SONAR bathymetry ship tracks. Let us mention that SONAR
ship tracks are typically acquired as a discrete set of measurement points, as op-
posed to continuous recording. However, the typical horizontal interval between
measurement points is always small compared to expected bathymetry variations;
therefore, in the context of this study the data set can be considered as consisting
of smooth continuous lines.

We select the region of the Marianas trench (Fig. 2). The trench is located in
the North Pacific ocean, east of the South Honshu ridge, parallel to the Mariana

Figure 2. The Marianas trench (left) in the North Pacific ocean corresponds to the subduction zone
at the contact between the Pacific and Philippine plates. It is the place on Earth where the oceans are
the deepest, with a maximum slightly greater than 11 km in the region called “Challenger Deep” (left,
dashed rectangle). The isolines represent depth in meters. On the close-up of this region (right), the
white square represents the area where we test our surface approximation technique.
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Islands. It corresponds to the subduction zone where the fast-moving Pacific plate
converges against the slower moving Philippine plate. It is also the place on Earth
where the oceans are the deepest, reaching a maximum depth of slightly more
than 11 km in the so-called “Challenger Deep” area (Fig. 2, right). This region is
ideal to test our surface approximation technique because it has been thoroughly
studied; therefore, many ship track data sets are available. We select a 45× 45 km
area, corresponding to latitudes between 11.2◦ and 11.6◦ North, and longitudes
between 142◦ and 142.4◦ East in Figure 2. We use 16 tracks from the database
assembled by David T. Sandwell and coworkers at the University of California,
San Diego (http://topex.ucsd.edu). Each individual track contains between 62 and
152 points giving depth for a given latitute and longitude. The total number of
points in the whole data set is 1576. The depth varies between 6779 and 10952 m.
As can be seen on Figure 3, the ship track coverage of the area is nonuniform. Note

Figure 3. We focus on a 45× 45 km region in the south-west of the
Marianas trench of Figure 2. We use 16 bathymetry ship tracks, each contain-
ing between 62 and 152 points. The entire set of curves contains 1567 points.
Each point gives depth for a given latitude and longitude. On this top view
the coordinates have been mapped using the Universal Transverse Mercator
(UTM) projection. The depth in the data set varies between 6779 and
10952 m. One can see that the ship track coverage is nonuniform. For instance
we have little information in the north-east and south-east corners of the area.
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Figure 4. We construct a bathymetry map from the set of 16 ship track data curves of Figure 3 using
a regular grid of 13× 13 quadrangular Bogner–Fox–Schmit finite elements of classC1. For display
purposes, the approximant obtained has been evaluated on a regular 200× 200 grid of points, and a
vertical exaggeration factor of 3 has been applied. The original 16 ship tracks are also shown (dashed
lines) to illustrate the quality of the surface obtained. The isolines represent bathymetry every 500 m
from−10.5 to−7 km. By comparing with Figure 2, one can see that we are correctly reproducing the
general trends of the bathymetry of the area.

in particular the lack of data in the north-east and south-east corners. Fortunately,
data coverage is much better near the center in the deepest part of the trench.

We create an approximant using 169 quadrangular Bogner–Fox–Schmit finite
elements defined on a regular 13× 13 grid in the horizontal plane in the area
under study. As underlined in the previous section, these elements allow us to
obtain an approximant withC1 regularity. Figure 4 shows a 3D view of the final
surface obtained, as well as the original set of ship tracks. For display purposes,
the approximant has been evaluated on a regular 200× 200 grid of points and a
vertical exaggeration factor of 3 has been applied. By comparing with Figure 2
and with the ship tracks, one can see that the smooth surface obtained correctly
reproduces the general characteristics of the bathymetry of the region, and behaves
satisfactorily even in the areas where data coverage is sparse.

We also evaluate the approximant obtained at the 1576 original data points of
the 16 ship tracks (Fig. 5). The original ship track data and the approximated curves
are almost superimposed, which illustrates that the technique is very accurate. To
estimate the accuracy of the method more quantitatively, we evaluate the total
quadratic error for the approximant based upon the classical formula:

Err (∪i x3,i ) =
(∑1576

i=1 (x̃3,i − x3,i )2∑1576
i=1 x2

3,i

)1/2

, (22)
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Figure 5. The original ship track data of Figure 3 (solid line) and the approximant of Figure 4 evaluated
at the same 1576 points (thick dashed line) are almost superimposed. This illustrates the accuracy of
our surface approximation technique. The total quadratic error is very small (ε = 3.29× 10−5). For
display purposes a vertical exaggeration factor of 3 has been applied on this 3D view.

wherex3,i represents thex3-data value, and wherẽx3,i is thex3-approximant value
for the same

(
x1,i , x2,i

) ∈ Ä. We obtain a value ofε = 3.29× 10−5, which is a
very satisfactory result (unusually low in the context of surface approximation, e.g.,
Gout (1997); as a comparison, a usualDm-spline (Arcang´eli, 1986) applied to the
same data set using the same finite-element grid gave an error ofε = 6.4× 10−4,
i.e., 20 times larger). The maximum error is of course located near the largest
variations of the surface. In this regard, let us mention that in the case of a data
set with large local variations, the method could be made even more precise,
and the overall error reduced, by applying a preprocessing and postprocessing
technique to the data, e.g., using scale transformations such as rank coding (Gout
and Komatitsch, 2000) or splines under tension. An alternative approach, based
on the use of additional first-derivative terms in the variational condition in order
to minimize overshoots, was suggested by Hutchinson (1989).

CONCLUSIONS

We have introduced a new method to approximate a surface from a given set
of curves, which allows one to take into account the continuous aspect of the data.
The regularity of the surface obtained can be arbitrarily selected, i.e., it can beC0,
C1, or higher. This allows us for instance to accurately describe the topography or
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bathymetry of real geophysical surfaces. We have used a ship track bathymetry data
set from the Marianas trench to illustrate the method. Future work will focus on
using quadrature formulas with a better order of approximation, and also applying
the method to contour data and stream lines.
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