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Surface Fitting of Rapidly Varying Data Using Rank
Coding: Application to Geophysical Surfaces1

Christian Gout2 and Dimitri Komatitsch 3

Addressing geophysical problems often implies the correct description of surfaces with large local
variations. This problem is of interest in many areas of geophysics—for instance, for the description
of topography when studying site effects in seismic wave propagation, or the propagation of lava
or pyroclastic flows along the slopes of a volcano, or in the presence of geological structures with
faults. However, surface fitting of rapidly varying data using classical functions like splines is known
to be difficult. Without information about the location of the large variations in the data set, the
usual approximation methods lead to instability phenomena or undesirable oscillations. We propose a
new approach that uses scale transformations, and whose originality consists in a preprocessing and a
postprocessing of the data. Variations of the unknown function are reduced using a scale transformation
in the preprocessing phase. The transformed data do not exhibit large variations, and therefore we
can use a usual approximant that will not create oscillations. An inverse scale transformation is
subsequently applied. We discuss the convergence of the method when the number of data points tends
to infinity. We show the efficiency of this technique by applying it to a Digital Elevation Model of the
topography of the Piton de la Fournaise volcano (Réunion Island, France).
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INTRODUCTION

In many problems of geophysical interest, when trying to describe surfaces, one has
to deal with data that exhibit rapid local variations. This occurs, for instance, when
describing the topography of mountain ranges, volcanoes, islands, or the shape of
geological entities, which can exhibit large and rapid variations due to the presence
of faults in the structure. The correct description of such geological surfaces, by a
fitting process from a given set of points, is therefore of great importance (Mallet,
1992). This is particularly true when one needs to describe topographic models
with good regularity, usuallyC0 or C1, from the knowledge of a given low- or
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medium-resolution set of surface points, often called a digital elevation model
(DEM). This is typically the case, for instance, when studying site effects and
ground motion amplification related to topography in seismic wave propagation
problems and earthquake hazard assessment (Frankel and Leith, 1992; Bouchon,
Schultz, and T¨oksoz, 1996; Komatitsch and Vilotte, 1998; Komatitsch and others,
1999), or when studying the propagation of pyroclastic flows or lava flows along
the slopes of a volcano (Ishihara, Iguchi, and Kamo, 1990).

Unfortunately, when applied to the approximation of surfaces from rapidly
varying data, usual methods like splines lead to strong oscillations near steep
gradients, as illustrated in Figure 1. When the location of the large variations in
the dataset is known, Salkauskas (1974) and Foley (1987) have proposed methods
that use a spline under tension with a nonconstant smoothing parameter, and Hsieh
and Chang (1994) have proposed a concept of virtual nodes inserted at the level
of the large variations in the case of an approximant in the context of computer-
aided geometric design. In the more general context when the location of the large
variations in the dataset is not knowna priori, Franke (1985) and Bouhamidi
(1992) have proposed splines under tension belonging to more general spaces.
These methods give good results in the case of curve fitting, but less accurate
results in the case of surface fitting. Other approaches such as the Discrete Smooth
Interpolation have also been used successfully to address the problem (Mallet,
1992, 1997).

Figure 1. When classical splines (for instance, here aC1 spline,
solid line) are used to interpolate data points (xi , f (xi )) with large
local variations (dashed line), strong spurious oscillations are gen-
erated near steep gradients.
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The new method we introduce here uses scale transformations, and is applied
without any particulara priori knowledge of the data. The philosophy of the method
is similar to interpolation methods based upon anamorphosed data commonly used
in geostatistics (see, for instance, Issaks and Srivastava, 1989). In the first part of
this article, a construction of the scale transformation families is presented. Results
concerning the convergence of the approximation are given without proof. In the
second part, we show the efficiency of this innovative approach by applying it
to the topography of the summit of the Piton de la Fournaise volcano, located in
the Réunion Island (Indian Ocean, France). This volcano exhibits large and rapid
variations in steep river valleys in its southwestern part, as well as in a caldera,
where the behavior of the method is tested.

DESCRIPTION OF THE METHOD

The method we propose uses two scale transformations—namelyϕd for the
preprocessing andψd for the postprocessing. The first one,ϕd, is used to transform
thezvalues representing the height of the unknown surfacef into values (ui ), reg-
ularly distributed in an interval chosen by the user, as illustrated in Figures 2A and
2B. The preprocessing functionϕd is such that the transformed data do not exhibit
large local variations, and therefore a usual spline operatorTd can subsequently
be applied without generating significant oscillations, as shown in Figure 2C. The
second scale transformationψd is then applied to the approximated values to map
them back and obtain the approximated values ofz (Fig. 2D). It is important to
underline that the proposed scale transformations do not create spurious oscilla-
tions. Moreover, this method is applied without any particular knowledge of the
location of the large variations in the dataset.

Let us consider a dataset (xd
i , z

d
i )d

i=1,...,N(d) indexed with a reald, such that
whend tends to 0, the number of data pointsN(d) tends to infinity. For the purpose
of a theoretical study of the convergence of the approximation, we introduce a func-
tion f : Ä→ [a, b], such that the data set becomes (xd

i , z
d
i = f (xd

i ))d
i=1,...,N(d).

The functions introduced above have the following expression, form ∈ IN :

—ϕd: [a, b] → [α, β] ⊂ IR,
—Td: (ϕd ◦ f ) ∈ Hm(Ä, [α, β]) → Td(ϕd ◦ f ) ∈ Hm(Ä, [α, β]),
—ψd ◦ (Td(ϕd ◦ f )) ∈ Hm(Ä, [a, b]),

where the preprocessingϕd and the postprocessingψd are continuous scale trans-
formations families, whereTd is an approximation operator, for instance a spline,
and whereHm(Ä, .) denotes the usual Sobolev space. More precisely, we intro-
duce a bounded nonempty connected setÄ with a Lipschitz-continuous boundary
of IR2, and an unknown functionf ∈ Hm′(Ä, [a, b]) that we want to approximate,
this hypothesis allowing to have (ϕd ◦ f ) bounded inCm(Ǟ) (with m′ > m+ 1),
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Figure 2. The preprocessing phase, A and B, transforms the valuesf (xi )
using a scale transformationϕd. After preprocessing, B, the local varia-
tions in the data have been drastically reduced. Therefore, it is possible
to obtain a regular approximant with no significant oscillations using an
usualC1 spline operator, as shown in C. A second scale transformation
ψd is subsequently applied to the values of the approximant in a postpro-
cessing phase, D, to map them back and obtain the final approximant. It
is important to mention that the scale transformations used do not create
spurious oscillations, as illustrated in D.

a property used to establish the convergence of the approximation (Gout, 1999).
We also consider a subsetAd of N = N(d) distinct points ofǞ such that

sup
x∈Ǟ

δ(x, Ad) = d (1)

whereδ is the Euclidean distance of IR2; the indexd represents the radius of the
biggest sphere included inÄ that does not intersect with any point ofAd, and thus,
whend tends to 0, the number of data points tends to infinity. We also introduce
the setZd

1 of N = N(d) real numbers such that

∀xd
i ∈ Ad, f

(
xd

i

) ∈ Zd
1 (2)

and the sequenceZd
2 of p(d) distinctz values obtained from the ordering ofZd

1 ,
∀z̃d

i ∈ Zd
2 , i = 1, . . . , p(d),

a = z̃d
1 < z̃d

2 < z̃d
3 < · · · < z̃d

p(d)−1 < z̃d
p(d) = b (3)
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where [a, b] = Im( f ). The sequenceZd
2 will be used for the construction of the

scale transformation families in the following section. In what follows, for conve-
nience, we also write (zi ) instead of (̃zd

i ).

Scale Transformation Families

In this section, we give a construction of the scale transformation families
by generalizing the technique introduced by Apprato (1987) and Torrens (1991).
These scale transformations are realistic in the sense that, as classical transforma-
tions, they are monotonous.

Preprocessing of the Data: Family (ϕd) of Scale Transformations

The goal of the scale transformationϕd is to reduce the variations in the data
set. We first constructϕd, and in order to study the convergence of the approxi-
mation, we then establish the convergence ofϕd to a functionϕ when the number
of data points tends to infinity (i.e.,d→ 0). Let [α, β] be an interval of IR, and
{ui }i=1,...,p(d), the following regular subdivision, fori = 1,. . . , p(d),

α = u1 < u2 < u3 < · · · < up(d)−1 < up(d) = β and ui+1− ui = β − α
p(d)− 1

(4)

These interval and subdivision are chosen by the user. When dealing with surface
approximation from rapidly varying data, we choose the interval to be [0, 1],
and an even subdivision of the{ui } that is used to reduce the local variations
of the (zi ). After applyingϕd, we obtain a new data set (xi , ui ) related to the
initial data byui = ϕd(zi ). When this technique is applied to other problems,
however, for instance in some applications in imaging, when one has an image
with homogeneous grey levels, it can on the contrary be of interest to increase
the variations between pixels values—the (zi )—; in such a case, Gout (1997)
showed that it is possible to choose a nonregular distribution in the interval [α, β]
to generate variations, and therefore to enhance some features present in the image
to facilitate its segmentation.

We introduceϕ : [a, b] → [α, β] the C∞ diffeomorphism that transforms
[a, b] into [α, β] (such families of transformations are usually called anamorphosis
in the geostatistics literature):

ϕ(z) = β − α
b− a

(z− a)+ α (5)

We also introduce the functionϕd, for i = 1, . . . , p(d)− 1, and for any
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z ∈ [zi , zi+1],

ϕd(z) = ui q
0
0m

(
z− zi

zi+1− zi

)
+ ui+1q

1
0m

(
z− zi

zi+1− zi

)
+ α1(zi )(zi+1− zi )q

0
1m

(
z− zi

zi+1− zi

)
+ α1(zi+1)(zi+1− zi )q

1
1m

(
z− zi

zi+1− zi

)
(6)

where theqi
lm, for i = (0, 1), andl = (0, 1), are the basis functions of the finite ele-

ment of classCm on [0, 1] (Ciarlet, 1978) and where, for anyi = 1, . . . , p(d)− 1,

α1(zi ) = ui+1− ui

zi+1− zi
and α1(zp(d)) = α1(zp(d)−1) (7)

Using relations (3)–(6), we obtain the following results:ϕd implements the inter-
polation of the (ui ), andϕd belongs toCm[a, b] :

(i) ϕd(zi ) = ui , for i = 1, . . . , p(d);
(ii) ϕd ∈ Cm[a, b].

We now consider asufficientconvergence hypothesis, which implies that the dis-
tribution of the data (zi ) has an asymptotic regularity in the interval [a, b] when
d tends to 0, and which is used to establish the convergence of the approximation.
This hypothesis is that there existsC > 0 andm′′ ∈ IN verifying m′′ ≥ m≥ 2 such
that, ford small enough, and for anyi = 1, . . . , p(d)− 2, we have∣∣∣∣1− zi+1− zi

zi+2− zi+1

∣∣∣∣ ≤ C

(
b− a

p(d)− 1

)m′′

(8)

We also suppose that the setAd introduced above satisfies that there existsC′ > 0
such that

p(d) ≤ C′

d2
(9)

Equation (9), introduced by Arcang´eli (1986), expresses a property of asymptotic
regularity of the distribution of the data setAd in Ǟ. Using a compactness argu-
ment, Gout (1998) established that hypotheses (8) and (9) imply that there exists
C′′ > 0, such that‖ϕd‖Cm[a,b] ≤ C′′ and

lim
d→0

ϕd = ϕ in C0([a, b]) (10)

whereϕd is defined by (6), andϕ is defined by (5).
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One can notice that construction of the scale transformationsϕd made in (6)
uses a finite difference scheme of order 1 to construct, from theui , the first deriva-
tives ofϕd at the points̃zi , i = 1, . . . , p(d). Moreover, the option retained in (6),
which is to cancel thel derivatives ofϕd at the points̃zi for any l = 2, . . . ,m,
could be substituted by the option consisting in using a finite difference scheme
of orderl to define thesel derivatives. Let us also mention that we have chosen
to construct scale transformations on a finite element basis in order to be able to
study convergence of the approximation.

Postprocessing of the Data: Family (ψd) of Scale Transformations

Similar to the way we constructed the scale transformationsϕd, we now
define a scale transformation familyψd that implements the postprocessing of
the calculation. We recall that after the preprocessing, the large local variations in
the data set have been drastically reduced; therefore it is possible to approximate the
data using a usual spline operatorTd without generating significant oscillations.
To map these values back and obtain the approximated values ofz, we need to use a
postprocessing step, and therefore need to introduce a family (ψd), which is almost
the inverse of (ϕd): asϕd converges toϕ, we constructψd such thatψd converges
toϕ−1. To do so, we define theC∞ diffeomorphismϕ−1 : [α, β] → [a, b] inverse
of ϕ defined in Equation (5):

ϕ−1(u) = (u− α)(b− a)

β − α + a (11)

We also defineψd the function, fori = 1, . . . , p(d)− 1,and for anyu ∈ [ui , ui+1],

ψd(u) = zi q
0
0m

(
u− ui

ui+1− ui

)
+ zi+1q

1
0m

(
u− ui

ui+1− ui

)
+ (ui+1− ui )β1(ui )q

0
1m

(
u− ui

ui+1− ui

)
+ (ui+1− ui )β1(ui+1)q1

1m

(
u− ui

ui+1− ui

)
(12)

where theqi
lm, for i = (0, 1), andl = (0, 1) are the basis functions of the finite

element of classCm on [0, 1] and where

β1(ui ) = zi+1− zi

ui+1− ui
and β1(up(d)) = β1(up(d)−1) (13)
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Under hypotheses (8) and (9), Gout (1998) established the following relations:

(i) ψd(ui ) = zi , i = 1, . . . , p(d);
(ii) ψd ∈ Cm[α, β];
(iii) there existsC > 0, such that‖ψd‖Cm[α,β] ≤ C
(iv) lim

d→0
ψd = ϕ−1 in C0([α, β]).

It is important to mention that (i) is one of the key points of the algorithm, that (ii)
allows us to obtain approximants with high regularity, and that (iii) and (iv) are
used to establish the convergence of the approximation.

The Smoothing Spline Operator

Given a Lagrange dataset (xi , (ϕd ◦ f )(xi ) = ϕd(zi )), we have to solve the
classical problem of constructing an approximantTd of classCk (with k = 1
or 2 in practice). In this work, we use a smoothingDm spline, as defined in
Arcangéli (1986) and Arcang´eli (1989), which has many advantages: it is possible
to implement a local refinement, the matrix of the linear system to solve is banded,
and it is possible to study convergence of the approximation. We have chosen to use
a smoothingDm spline and not an interpolation spline because we want to be able
to work with large data sets of up to several hundreds of thousands of points, and
in that case, a smoothing spline is far less expensive than an interpolation spline.

We consider the functional, for any8 ∈ Hm(Ä),

Jd
ε (8) = 〈ρd(8− ϕd ◦ f )

〉2
d + ε |8|2m,Ä (14)

whereρd ∈ L(Hm(Ä), IRp(d)) is defined byρd f = ( f (a))a∈Ad ∈ IRp(d), |·|m,Ä is
the usual seminorm ofHm(Ä), 〈·〉d is the usual norm in IRp(d), andε is a smoothing
parameter. We callσ d

ε theDm-smoothing spline onÄ relative toρd(ϕd ◦ f ),which
is the unique solution of the minimization problem: for any8 ∈ Hm(Ä), find
σ d
ε ∈ Hm(Ä) such that

Jd
ε

(
σ d
ε

) ≤ Jd
ε (8) (15)

The solutionσ d
ε to this problem is also the unique solution of the variational

problem: for any8 ∈ Hm(Ä) , find σ d
ε ∈ Hm(Ä) such that〈

ρdσ d
ε , ρ

d8
〉
d
+ ε(σ d

ε ,8)m,Ä =
〈
ρd (ϕd ◦ f ), ρd8

〉
d

(16)

Uniqueness of the solution can be proved using the Lax–Milgram lemma and
results by Necas (1967) to establish the equivalence of norms.
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In order to computeσ d
ε , we choose to discretize it on a finite element basis,

which enables us to obtain a small sparse linear system. We choose the generic
Bogner–Fox–Schmit (BFS) rectangular finite element (Ciarlet, 1978). In what
follows, we use either the BFS of classC0 or of classC1 in order to obtain aC0

or C1 approximant. In the following, we writeσ d
ε instead ofTd.

Convergence of the Approximation

We first give the convergence of theDm spline operatorσ d
ε related to the

transformed data (ϕd ◦ f ) to the functionϕ ◦ f when d tends to 0. We obtain
this result using the convergence ofϕd to ϕ, using the fact that Arcang´eli (1989)
showed that, for any functiong, we have limd→0 σ

d
ε (g) = g. Keeping the notation

of the previous sections, and since (ϕd ◦ f ) is bounded inCm(Ǟ), Gout (1998)
proved that

lim
d→0

(
σ d
ε (ϕd ◦ f )

) = ϕ ◦ f in C0
(
Ǟ
)
. (17)

From this result, using a compactness argument, Gout (1999) established a theo-
retical result concerning the convergence of the approximation:

lim
d→0

(
ψd ◦ σ d

ε (ϕd ◦ f )
) = ϕ−1 ◦ ϕ ◦ f = f in Hm−θ (Ä) (18)

for anyθ > 0 such thatθ < m− 1 (⇒Hm−θ (Ä) ↪→ C0(Ǟ)). Note that if we take
n = 2 andm= 3, the convergence takes place inH2−θ for anyθ ∈ ]0, 1[.

APPLICATION TO A VOLCANO

The Piton de la Fournaise is a volcano located in the Indian Ocean, in the
Réunion Island, France. This volcano exhibits strong topographic variations near
its summit, due to the presence of a caldera and of two steep river valleys in
its southwestern part, as can be seen on the picture of the volcano presented in
Figure 3. The maximum height of the volcano is 2.6 km, and the depth of the
valleys reaches more than 1000 m in several places.

Being able to describe the topography of such regions exhibiting rapid local
variations with at leastC0 regularity, or evenC1 regularity, is important in many
fields in geophysics. For example, this description of the topography can be an
input to numerical modeling codes that study the propagation of pyroclastic flows
or lava flows, and related hazards; other examples are seismic site effects and
ground motion amplification due to topographic features. In both cases, to avoid
creating numerical artefacts, it is important not to introduce spurious oscillations



P1: FNN

Mathematical Geology [mg] PL097-623 July 27, 2000 22:12 Style file version June 30, 1999

882 Gout and Komatitsch

Figure 3. Image of the Piton de la Fournaise volcano in the R´eunion Island, Indian Ocean, France.
One can clearly see the summital caldera, and the two steep valleys in the South–West. The size of the
region represented is approximately 40× 35 km. The height of the volcano is 2.6 km. Image taken as
part of the Space Shuttle SIR-C/X-SAR radar missions, courtesy of Pete Mouginis-Mark, University
of Hawaii.

in the description of the model itself. Otherwise, Komatitsch and Vilotte (1998)
and Komatitsch and others (1999) underlined in the context of curvilinear spectral-
element modeling of elastic wave propagation that artificial diffraction points ap-
pear at the edges between elements, which significantly affects the behavior of
surface waves.

To demonstrate the efficiency of our method, we createC0 andC1 approxi-
mants from a set of 8208 data points taken from a DEM of the summit. The data
points in the DEM have been obtained by digitizing a map of the area. In this
DEM, the height is given on an evenly spaced grid of 76× 108 points, with a grid
spacing of 200 m. Therefore the region considered has a dimension of 15 km in
the East–West direction, and 21.4 km in the North–South direction. This DEM is
shown in Figure 4 using a top view with isocontours representing the height of the
topography every 0.2 km.
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Figure 4. Isocontours of the DEM of the Piton de la Fournaise volcano. The DEM is given on
a grid of 76× 108 points, with a uniform grid spacing of 200 m. The isocontours represent the
height of the topography every 0.2 km. The height of the summit is 2.6 km. One can clearly
observe the slopes of the two steep valleys.
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In the preprocessing, we choose a regular distribution of the{ui } in [α, β] =
[0, 1] in order to reduce the large variations in the data set. The approximants
are subsequently obtained by discretizing theDm spline in a finite-element space.
In the case of theC0 approximant, we use 30× 40 rectangularC0 BFS finite
elements, each having four degrees of freedom. In the case of theC1 approx-
imant, we use 15× 20 rectangularC1-BFS finite elements, each having six-
teen degrees of freedom. In both cases, the smoothing parameterε is taken to
be 10−6.

In Figure 5, we show a three-dimensional representation of theC1 ap-
proximant after postprocessing, evaluated on an evenly spaced grid compris-
ing 200× 200 points. The grid spacing in the East–West direction is therefore
107.54 m, and that in the North–South direction is 75.37 m. From the figure it
is clear that the results do not exhibit strong oscillations, even though the use of
such a dense grid for the evaluation of the approximant is expected to enhance the
artefacts generated by the approximation method. To compare this approximant
to the original data set more precisely, in Figure 6 we present a top view of the
approximated values, with isocontours representing the height every 0.2 km, in
addition to the same plot for the original data set, as in Figure 4. It is clear from
these plots that the approximant is very close to the original data, with local varia-
tions smoothed as expected. One can notice that the approximant does not exhibit
significant oscillations even in the difficult regions of the model, particularly the
two valleys.

To demonstrate this more quantitatively, we evaluate the quadratic error for
the two approximants

Err(∪
i

zi ) =
(

8208∑
i=1

(z̃i − zi )
2

/
8208∑
i=1

z2
i

)1/2

(19)

wherezi represents thez-data value, and wherẽzi is the z-approximant value
for the same(xi , yi ) ∈ Ä. In the case of theC0 approximant, we find that the
error is 4.96 10−4; in the case of theC1 approximant it is 4.01 10−4. Such val-
ues are considered very good in the context of surface approximation, and show
the efficiency of the proposed approach for this case with rapidly varying data.
In the entire data set, the maximum error measured is 5.5%, corresponding to
an absolute error of 56 m. This maximum error occurs in a region located on
the edge of the steep valleys, where the local variations are the strongest, as ex-
pected. More detailed studies of the approximation error, and evidence that the
rate of convergence is higher in this method than in usual approaches with no
preprocessing, such as splines under tension or thin plate splines, can be found in
Gout (1997).
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CONCLUSIONS

We have presented a new method to fit rapidly varying geophysical data. The
capability to suppress, or at least significantly reduce, oscillations of the surface
near steep gradients has been demonstrated. The scale transformation families
introduced provide more control on the behavior of the approximant, without any
particular a priori knowledge of the location of the large variations in the dataset.
The regularity obtained, which can beC0, C1, or higher, allows us to describe
the topography of real geophysical surfaces accurately. We have shown the good
properties of this approach by applying it to the real case of the Piton de la Fournaise
volcano.
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