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SUMMARY

A spectral element method for the approximate solution of linear elastodynamic equations, set in a weak
form, is shown to provide an e�cient tool for simulating elastic wave propagation in realistic geological
structures in two- and three-dimensional geometries. The computational domain is discretized into quadrangles,
or hexahedra, de�ned with respect to a reference unit domain by an invertible local mapping. Inside each
reference element, the numerical integration is based on the tensor-product of a Gauss–Lobatto–Legendre
1-D quadrature and the solution is expanded onto a discrete polynomial basis using Lagrange interpolants.
As a result, the mass matrix is always diagonal, which drastically reduces the computational cost and allows
an e�cient parallel implementation. Absorbing boundary conditions are introduced in variational form to
simulate unbounded physical domains. The time discretization is based on an energy-momentum conserving
scheme that can be put into a classical explicit-implicit predictor=multicorrector format. Long term energy
conservation and stability properties are illustrated as well as the e�ciency of the absorbing conditions.
The accuracy of the method is shown by comparing the spectral element results to numerical solutions
of some classical two-dimensional problems obtained by other methods. The potentiality of the method is
then illustrated by studying a simple three-dimensional model. Very accurate modelling of Rayleigh wave
propagation and surface di�raction is obtained at a low computational cost. The method is shown to provide
an e�cient tool to study the di�raction of elastic waves and the large ampli�cation of ground motion caused
by three-dimensional surface topographies. Copyright ? 1999 John Wiley & Sons, Ltd.
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INTRODUCTION

In computational seismology and earthquake engineering, considerable e�orts have been devoted
for developing highly accurate numerical techniques for the solution of elastic wave equations.
An increasing number of applications, such as elastic waveform modelling for realistic geological
media or the assessment of site e�ects in earthquake ground motion, have underlined the need for
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1140 D. KOMATITSCH ET AL.

high-performance methods that are able to routinely handle complex two- and three-dimensional
geological con�gurations of high practical interest.
Finite di�erence methods, that have been widely used in computational seismology, require a

large number of grid points to achieve the expected accuracy [1; 2], even with high-order explicit
or implicit spatial operators [3; 4]. Free surface boundaries and complex con�gurations coarse
modelling produce lack of precision in the simulation of Rayleigh wave propagation [5; 6]. In
practice, a di�cult trade-o� between numerical dispersion and computational cost is required [7; 8].
Finite element methods have attracted somewhat less interest among seismologists [9]. One of

the reasons for that is that low-order �nite element methods exhibit poor dispersion properties [10],
while higher-order classical �nite elements raise some troublesome problems like the occurrence of
spurious waves. Recently, space–time and Galerkin = least-squares �nite element methods, related
to Hamilton’s principle, have been introduced both for acoustic and full elastic wave propagation
[11–13] with some success, even though application of these methods to realistic seismological
problems have still to be shown.
Boundary element methods [14; 15] have been successfully applied in seismology [16; 17]. The

main advantages are that the solution is sought over a domain one dimension lower than the
physical domain, and that the radiation condition is a priori satis�ed. Such methods require homo-
geneous domains and linear constitutive laws (unless a scheme in time domain is adopted). The
linear system to be solved is non-symmetric and, in some cases, it can be ill-conditioned. The
expected computational advantage in processing time and storage requirement is, therefore, not
always achieved.
In their pioneering work [18], Aki and Larner represented complex wave�elds by a simple

superposition of plane waves. Since then, this technique (the discrete wave number method, DWN)
has been extended by many authors [19; 20]. Particularly interesting has been the combination of
discrete wave number expansion for Green function [19; 21] with a boundary integral representation
[22].
Higher-order methods like spectral methods, that enable to achieve the expected accuracy using

few grid points per wavelength, have also been proposed for elastodynamics problems [23; 24].
To deal with more general boundary conditions, the set of truncated Fourier series is usually
replaced by a set of algebraic polynomials (Chebyschev or Legendre) in space [25; 26]. In these
methods, the accuracy is shown to depend strongly on the choice of the collocation points. A
limitation of the approach is that the non-uniform spacing of the algebraic polynomial collocation
points puts stringent constraints on the time-step [27]. Also, spectral methods, like �nite di�erence
methods, cannot handle complex geometries easily nor, if based on a strong formulation, realistic
free surfaces. To overcome these drawbacks, several approaches have been considered like, for
instance, the use of curvilinear co-ordinate systems [25; 27], or domain decomposition methods
[28], but with an increase of the computational cost.
Understanding of the similarity between collocation methods and variational formulations with

consistent quadrature lead, in 
uid dynamics, to the spectral element method [29; 30] which may
be related to the h–p version of the �nite element method [31]. This approach, which brings new

exibility to treat complex geometries, has been proposed for wave propagation problems recently
[32–34].
This paper describes a practical spectral element method to solve problems of two- and three-

dimensional elastic wave propagation in complex geometries. The method, which stems from a
weak variational formulation, allows a 
exible treatment of boundaries or interfaces and deals with
free-surface boundary conditions naturally. It combines the geometrical 
exibility of a low-order
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method with the exponential convergence rate associated with spectral techniques, and su�ers from
minimal numerical dispersion and di�usion. The unbounded domain is simulated by introducing
arti�cial boundaries on which absorbing conditions are enforced. As far as the spatial discretization
is concerned, our formulation is based on Legendre polynomials and Gauss–Lobatto–Legendre
quadrature, which leads to fully explicit schemes while retaining the e�cient sum-factorization
techniques [35]. Although the particular choice of the sets of algebraic polynomials, Chebyshev
or Legendre, and collocation points, related to the numerical quadrature, does not generally a�ect
the error estimate signi�cantly, it greatly a�ects the conditioning and sparsity of the resulting set
of algebraic equations and it is critical for the e�ciency of parallel implementations [36]. Our
time discretization makes use of an energy-momentum conserving scheme, that can be rewritten
into a classical explicit–implicit predictor=multicorrector format that allows an e�cient parallel
implementation as well.
The accuracy of the method is �rst illustrated by showing energy conservation or dissipation,

depending on the boundary conditions, in a simple rectangular domain. Then the results for the
incidence of a surface Rayleigh wave upon a semicircular canyon are compared with those obtained
by Kawase [37] using the discrete wavenumber-boundary element method. These reference results
have been extensively veri�ed and are trustworthy. The agreement is very good. In order to
illustrate the capabilities of the method, simulations of some other two- and three-dimensional
problems are presented. The results obtained for a two-dimensional layered medium, excited by
an explosive linear source, are compared with synthetic seismograms calculated using the indirect
boundary element method (IBEM) [38; 39]. Again the agreement is very good. Finally, a three-
dimensional topography is studied. The possibilities of the method are explored for simple yet
rather realistic con�gurations.

ELASTIC WAVE EQUATIONS

We consider an elastic inhomogeneous medium occupying an open, bounded region �
⊂Rnd ,
where nd is the number of space dimensions. The displacement and velocity vectors at a point
x and time t are denoted by u(x; t) and v(x; t), respectively, where x∈ �
 and t ∈ I= [0; T ], with
I the time interval of interest. The equations of the initial=boundary-value problem of elastic wave
propagation are

�v̇= div[b] + f (1)

�u̇= �v (2)

with the initial conditions

u(x; 0) = u0(x) (3)

v(x; 0) = v0(x) (4)

where b(x; t) is the stress tensor; f(x; t) is a generalized body force; �= �(x)¿0 is the mass
density; u0(x) and v0(x) are, respectively, the initial displacement and velocity �elds. A dot over
a symbol indicates partial di�erentiation with respect to time. In component forms, div[b] is �ij; j

with i; j=1; 2; : : : ; nd. The stress is determined by Hooke’s law

b(∇u)= c (x) : ∇u (x; t) (5)
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where c (x) is the elastic tensor at a point x and ∇u= ui; j is the displacement gradient. In com-
ponents form,

�ij(x; t)= cijkl(x)uk; l(x; t) (6)

with uk; l= @uk=@xl. Since we are considering an elastic medium, c(x) is symmetric

cijkl= cjikl= cijlk = cklij (7)

and positive de�nite

cijkl ij kl¿0 ∀ ij =  ji 6=0 (8)

In computational seismology, two simple source terms are often considered. The �rst is a point
force

f(x; t)=fiêi�(x− x0)G(t − t0) (9)

where fi is the magnitude of the force applied at point x0 and at time t0 in the êi direction;
�(x − x0) is the Dirac function and G(t − t0) is an arbitrary function describing the force time
variation. The second is an equivalent body force, derived from a seismic moment density tensor
distribution, which represents the equivalent stress distribution associated with seismic sources

f(x; t)= − div[m(x; t)] (10)

where m(x; t) is the seismic moment density tensor at point x and time t. In many seismological
applications, a point source approximation to a seismic event may be quite satisfactory and �nite
sources may be generated by straightforward superposition of simple point sources [40]. For such
a case we have

m (x; t)=M(t)�(x− x0) (11)

where M is a symmetric tensor that has all the properties of a stress tensor. The spherical part of
the moment tensor carries information about P waves only, while the deviatoric part propagates
S and P waves. In three dimensions, depending on the eigenvalues �j of M, pure shear faults
(�1 = − �3; �2 = 0), pure tension cracks (�1 6=0; �2 = �3 = 0), explosive sources (�1 = �2 = �3 6=0)
or compensated linear dipoles (�1 6=0; �2 = �3 = − �1=2) can be simulated. Body wave radiation
depends linearly on the rate of change of the moment tensor. A simple rise time approximation
can be used:

M(t)=M0G(t − t0) (12)

where M0 is a constant moment tensor. Our formulation provides a natural way to introduce
these point sources. Also, for elastic, isotropic media we can completely describe the incidence of
plane waves using analytical means and give tractions at a boundary to enforce their cancellation.
Alternatively, from the analytical solution it is also possible to compute the initial displacement,
velocity and acceleration for all the points of the model.

Boundary conditions

In geophysical problems, solutions are often assumed to extend to in�nity along some directions.
As a result, a fundamental obstacle to the direct application of several numerical methods is the

Copyright ? 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 45, 1139–1164 (1999)



THE SPECTRAL ELEMENT METHOD FOR ELASTIC WAVE EQUATIONS 1143

presence of an unbounded domain. When the numerical method does not a priori satisfy the
radiation condition, the formulation has to be de�ned over a bounded region by introducing an
arti�cial external boundary with appropriate absorbing boundary conditions. The boundary of the
open domain 
, denoted by �, is therefore decomposed into

�=�int ∪�ext (13)

where �int and �ext denote non-overlapping subregions, �ext being the arti�cial external boundary
and �int the physical boundary.

Physical boundary conditions. The physical boundary �int is divided into two non-overlapping
parts �intT and �intg , where the traction vector and the displacement �eld are respectively prescribed:

�(x; t) · n(x) = T(x; t) on �intT (14)

u(x; t) = g(x; t) on �intg (15)

T(x; t) is the prescribed boundary traction vector at a point x and time t and g(x; t) the prescribed
displacement �eld. In component form � · n is �ijnj.

Absorbing boundary conditions. The representation of the radiation condition associated with the
external boundary is a di�cult problem, and numerous approximate schemes have been proposed
in the geophysical literature [41]. Employing an asymptotic expansion of the far-�eld solution
to generate a sequence of local boundary operators [42], exact non-local boundary conditions
have now been derived. They are, however, computationally expensive and their application has
been mainly restricted up to now to accoustic problems [43; 44]. We assume here a simple local
approximation based on the variational formulation of the paraxial condition originally introduced
by Clayton and Engquist [45]. Along the boundary surface, the local transient impedance of �ext

is approximated by use of a limited wave-number expansion of the elastodynamics equation in the
Fourier domain. Such an approximation is accurate for waves impinging on the boundary at small
angles only. In the following, a �rst-order approximation, close to that of Stacey [46], is retained.
On the arti�cial external boundary, the condition is expressed as

t=cL�[v · n]n + cT�vT (16)

where t is the boundary traction; n is the unit outward normal to the surface; vT = v − [v · n]n
the projection of the velocity �eld on the surface; cL and cT are the propagation velocities of P
(longitudinal) and S (transversal) waves, respectively.

Variational formulation

In order to outline the spectral element method, we �rst start with the variational formulation
of the physical problem. The solution u is searched in the space of kinematically admissible
displacements:

St = {u(x; t)∈H 1(
)nd : 
× I→Rnd ; u(x; t)= g(x; t) on �intg × I} (17)
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where H 1 is the classical Sobolev space that denotes the space of square-integrable functions
with square-integrable generalized �rst derivatives. Introducing the function space V of the test-
functions w:

V= {w(x)∈H 1(
)nd : 
→Rnd ;w(x)= 0 on �intg } (18)

the weak form of the problem (1)–(3) reads: �nd u∈St , such that ∀t ∈ I and ∀w∈V

(w; �v̇) + a(w; u) = (w; f) + 〈w;T〉� intT
+ 〈w; t〉�ext (19)

(w; �u̇) = (w; �v) (20)

with

(w; �u(: ; t)|t=0) = (w; �u0) (21)

(w; �v(: ; t)|t=0) = (w; �v0) (22)

where (· ; ·) is the classical L2 inner product, and

(w; u) =
∫


v · u dV (23)

〈w; u〉� =
∫
�
w · u d� (24)

The H 1 bilinear form a(· ; ·) is the strain-energy inner product and is symmetric, V-elliptic and
continuous:

a(w; u)=
∫


� :∇w dV =

∫


∇w : c :∇u dV (25)

where in component form, � :∇w= �ij@wi=@xj.

Spatial discretization

The original physical domain �
 is discretized into nel non-overlapping elementary quadrilaterals
�
e. This partition �
=

⋃nel
e=1

�
e of the domain is generically referred to as the quadrangulation
and is denoted Qh. The restriction of the test-function w to the element �
e is denoted wh| �
e

. Let
us denote �= [−1; 1], and the reference volume �nd , which is a square or a cube depending on
the spatial dimension nd of the problem. For each element �
e ∈Qh, we suppose that there exists
an invertible mapping function Fe between the reference volume and a local coordinate system
� of the element �
e, de�ned as Fe : → �
e such that x(�)=Fe(�). We can then make use of
this mapping to go between the physical and the reference domain, and vice versa. Associated
with the spatial discretization Qh, one introduces a piecewise-polynomial approximation Sh

N ×Vh
N

of the functional space S×V de�ned previously:

Sh
N = {uh ∈S: uh ∈L2(
)nd and uh| �
e

◦Fe ∈ [PN ( )]nd} (26)

and

Vh
N = {wh ∈V: wh ∈L2(
)nd and wh| �
e

◦Fe ∈ [PN ( )]nd} (27)
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Since Vh
N ⊂V, given two adjacent elements, say 
e1 and 
e2, and any wh ∈Vh

N , the restrictions
of wh to these elements must coincide along the intersection of their respective boundaries. The
mappings Fe1 and Fe2 should be compatible in the sense that if

�
e1 ∩ �
e2 =Fe1 (
1)=Fe2 (
2) (28)


1 and 
2 being two edges of the reference square, then F−1
e2 ◦Fe1 must be an a�ne mapping from


1 onto 
2. In particular, the set of nodes located on �
e1 ∩ �
e2, generated as the images by Fe1
of the Gauss–Lobatto nodes on 
1 must coincide with those that are images of the Gauss–Lobatto
nodes on 
2. This ensures the continuity across element boundaries.
Inside each reference volume ; [PN ( )]nd is taken to be the space generated as the tensor-

product space of all polynomials of degree 6N in each of the nd spatial directions. The charac-
teristic length scale associated with the underlying mesh is denoted h. The spectral element spatial
discretization can hence be characterized by the total number of elements nel and by the polyno-
mial degree N used on each element. The discrete variational problem then reads: �nd uhN ∈Sh

N; t ,
such that ∀t ∈ I and ∀wh

N ∈Vh
N ,

(wh
N ; �̇v

h
N ) + a(wh

Nu
h
N ) = (w

h
N ; f) + 〈wh

N ;T〉� intT
+ 〈wh

N ; t〉�ext (29)

(wh
N ; �u̇

h
N ) = (w

h
N ; �v

h
N ) (30)

with

(wh
N ; �u

h
N (:; t)|t = 0) = (wh

N ; �u
h
0N ) (31)

(wh
N ; �v

h
N (:; t)|t = 0) = (wh

N ; �v
h
0N ) (32)

The spatial discretization must be completed by de�ning the discrete inner products associ-
ated with the continuous inner products involved in the variational formulation. This is done
by choosing a numerical quadrature for integrating each element integral, de�ned over the ele-
mentary domain �
e in the x-space, after a pull back on the parent domain , using the local
mapping Fe. Although the particular choice of the unisolvent basis points �i on the reference
element and the numerical quadrature can be made independently, in order to take advantage of
e�cient sum-factorization techniques, and to improve the conditioning and sparsity of the result-
ing set of algebraic equations, the unisolvent set of (N + 1)nd basis points for PN is taken to
be the nd tensor product of the N + 1 Gauss–Lobatto–Legendre points. For nd=3, this de�nes
the grid �e

N = {(�i; � j; �k); i; j; k =1; : : : ; N + 1}, with �i, �j and �k the Gauss–Lobatto points in
each direction of the reference element . The discrete inner products are therefore based on the
tensor-product of 1-D Gauss–Lobatto–Legendre formulas. The quadrature points are the same as
the basis points, and for N + 1 quadrature points, all polynomials of degree 62N − 1 can be
integrated exactly. The variational formulation requires two inner products, the L2 inner product
and the H 1 bilinear form, their discrete formulation being, for nd=3:

(wh
N ; u

h
N )N =

nel∑
e=1

N+1∑
i; j; k=1

wh
N | �
e

(�i; � j; �k)uhN | �
e
(�i; � j; �k)|Je(�i; � j; �k)|!ijk (33)
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aN (wh
N ; u

h
N ) =

nel∑
e=1

N+1∑
i; j; k=1

b(�i; � j; �k) : ∇̃wh
N | �
e

(�i; � j; �k)|Je(�i; � j; �k)|!ijk (34)

=
nel∑
e=1

N+1∑
i; j; k=1

∇̃wh
N | �
e

(�i; � j; �k) : c(�i; � j; �k) : ∇̃uhN | �
e
(�i; � j; �k)|Je(�i; � j; �k)|!ijk

(35)

where Je is the Jacobian of the co-ordinate transformation at the element level, !ijk =!i!j!k with
!i¿0 are the quadrature weights of the 1D Gauss–Lobatto–Legendre rule, and ∇̃ is the pull back
of the gradient operator on the reference volume :

∇xwh
N | �
e

= ∇̃wh
N | �
e

(�)=∇�wh
N | �
e

(�)F−1e (�) (36)

Fe(�)= @�Fe(�) being the gradient of the geometrical transformation, and �=(�; �; �). Such a
consistent integration is shown to be su�cient for complex geometries or heterogeneous elastic
parameters [47], which is an important consideration when wave equations are to be solved for
situations of practical interest.
The piecewise polynomial approximation w h

N of w is de�ned using the Lagrange interpolation
operator IN on the Gauss–Lobatto–Legendre grid �e

N : IN (w| �
e
) is the unique polynomial of

PN ( ) which coincides with w| �
e
at the (N + 1)nd points of �e

N . The corresponding Lagrange
interpolants Qe

N are therefore the tensor-product of nd one-dimensional Lagrange interpolants of
degree N. For nd=3, Q

ijk; e
N ∈ [PN ( )]3,

Qijk; e
N (�l; �m; �n) = �il�jm�kn ∀(�l; �m; �n)∈�e

N (37)

wh
N | �
e

(x; y; z) =IN (w| �
e
)=

N+1∑
i; j; k=1

Qijk; eN (�i; � j; �k)we
ijk (38)

with

Qijk; eN (�; �; �)= li; eN (�)⊗ l j; eN (�)⊗ lk; eN (�) (39)

where li;eN (�) denotes the characteristic 1-D Lagrange polynomial of degree N associated with
the Gauss–Lobatto–Legendre point i of the corresponding one dimensional quadrature formula;
x=Fe(�) and we

ijk =w
h
N | �
e

◦Fe(�i; � j; �k), and �il=1 if i= l, �il=0 otherwise.
The procedure outlined above leads, like in classical �nite element methods, to a coupled system

of second-order ordinary di�erential equations in time:

M v̇(t)=Fext(t)−Fint(uhN ; t); u̇(t)= v(t) (40)

where now u(t)= {uijk(t)} and v(t)= {vijk(t)} respectively denote the displacement and velocity
vectors of nd × nnode components, nnode being the total number of integration points that form the
global integration grid �N de�ned as the assembly of the elementary integration grids on each
element �N =

⋃
e �

e
N .

The internal force vector Fint, at node {lmn}, is de�ned as

Fint
lmn= aN (QlmnN ; uhN )− 〈QlmnN ; t(uhN )〉N;�ext (41)
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where the element summation in the second term on the right-hand side extends to all the elements
that share a face with the arti�cial external boundary �ext. The external force vector Fext at node
{lmn} is

Flmn; ext = (QlmnN ; f)N + 〈QlmnN ;T〉N;�intT
(42)

When considering an equivalent body force derived from a seismic moment tensor density dis-
tribution with a localized spatial support—see equation (10)—the term on the right-hand side in
equation (42) can be written after integration by parts:

Flmn; ext =
∑
e

[ ∫

e

∇Qlmn; eN : m(x; t) dV
]
+ 〈Qlmn

N ;T〉N;�intT
(43)

where the assembly operation involves only the elements that belong to the spatial support of the
moment density distribution for the �rst term and elements that share a common face with the
physical boundary �intT for the second term. The mass matrix M is simply de�ned as

M=
nel∑
e=1

∫

e

Qe
N ⊗ Qe

N� dV (44)

An attractive property of the method is that, in contrast with classical �nite element methods, due
to the consistent integration scheme and the use of Gauss–Lobatto Legendre formulas, the mass
matrix M is by construction always diagonal, leading to a fully explicit scheme. This was �rst
pointed by Maday and Patera in the context of spectral approximation of elliptic and Navier–Stokes
equations [30]. The spectral element method therefore combines the geometrical 
exibility of the
�nite element method with the fast convergence associated with spectral techniques. The discrete
solution su�ers from minimal numerical dispersion and di�usion, a fact of primary importance in
the solution of realistic geophysical problems [44; 48].

Discretization in time

We discretize the time interval of interest using a time step �t. Introducing three control
parameters �, � and 
, all belonging to [0; 1], the semi-discrete momentum equation is then enforced
in conservative form [49] at tn+�:

1
�t

M [vn+1 − vn] =Fext
n+� −Fint(uhn+�; v

h
n+�) (45)

un+1 = un +�t
[(
1− �




)
vn +

�


vn+1

]
+�t2

(
1
2
− �




)
an (46)

an+1 =
1


�t
[vn+1 − vn] +

(
1− 1




)
an (47)

where un+�
:= �un+1 + (1 − �)un and Fextn+�

:= �Fext
n+1 + (1 − �)Fext

n . Simo et al. [49] have shown
that for �= �=
=1=2 this energy–momentum method exactly preserves the total energy, linear and
angular momenta (these values de�ne an acceleration-independent algorithm). It is second-order
accurate if and only if �=1=2. This Newmark-type scheme can be generalized to a predictor-
multicorrector format that allows an e�cient parallelization. The scheme is shown in this case
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to be conditionally stable, and the associated Courant condition depends on the size of the smallest
grid cell. Denoting nel the total number of elements and nd the spatial dimension, the average size
of a spectral element for a �xed size of the model under study is proportional to n−1=ndel . It can also
be shown that on the reference interval [−1; 1], denoting N the polynomial order, the minimum
grid spacing between two Gauss–Lobatto–Legendre points occurs at the edges of the interval, both
in −1 and in 1, and is proportional to N−2. Therefore, the Courant condition, related to the size
of the smallest grid cell, can be written �tC¡O(n−1=ndel N−2). One can note that with the help of
a sub-stepping procedure [50], the scheme can achieve fourth-order accuracy, with no additional
storage or extra computations of high-order gradients, while retaining the stability, conservation
properties and implementation of this second-order method. In the following box the second-order
iterative scheme is summarized.

i=0 (i is the iteration number)
Predictor phase:

u(i)n+1 = ũn+1 v(i)n+1 =0 a(i)n+1 = ãn+1
Solution phase:

1
�t

M�v(i) =Fext
n+� −Fint(u(i)n+�; v

(i)
n+�)−

1
�t

M[v(i)n+1 − vn]
Corrector phase:

v(i+1)n+1 = v(i)n+1 + �v

u(i+1)n+1 = ũn+1 +
��t


v(i+1)n+1

a(i+1)n+1 = ãn+1 − 1

�t

v(i+1)n+1

where the predictors are simply de�ned as

ũn+1 = un +�t
(
1− �




)
vn +�t2

(
1
2
− �




)
an

ãn+1 =
(
1− 1




)
an − 1


�t
vn

Within this energy–momentum-conserving framework, there is no di�culty to handle a more com-
plex constitutive behaviour, in particular to incorporate attenuation. Convergence and stability have
been extensively studied by Hughes and Simo [49–51].

Numerical implementation. In all the simulations presented in this paper, the parameters of the
predictor-multicorrector algorithm are �=1=2, �=1=2 and 
=1. The associated Courant number
can be de�ned as nC = max [c�t=�x], where c is the elastic wave speed and �x the collocation
grid spacing. Since, as seen before, this Courant condition behaves like �tC¡O(n−1=ndel N−2), with
nel the number of elements, nd the spatial dimension and N the polynomial order, a trade-o�
has to be found between the h and the p discretization. Typically, when the geometry of the
problem exhibits important variations and therefore imposes a high number of elements to be
correctly sampled, we use a higher number of elements with a lower polynomial degree inside
each element, while when the signal we want to propagate in the model has some signi�cant energy
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at higher frequencies, but the geometry is smoother, we use a lower number of elements and a
higher polynomial degree inside each element. In practice, in the simulations presented below, we
used a polynomial approximation of order N =5 or of order N =8, depending on the geometry of
the problem and of the frequencies involved, and empirically determined the maximum Courant
number to be of the order of 0·60, which is the value that has been used in all the examples
presented.
The method is shown to work accurately with a low number of grid points per minimum wave-

length, corresponding to the maximal frequency fmax de�ned as the frequency above which the
spectral amplitude of the source becomes less than 5 per cent of the maximum value associated
with the fundamental frequency f0. For a Ricker wavelet in time, one gets the approximate relation
fmax ' 2·5f0. In practice, a spatial sampling of the order of 4 or 5 points per minimum wavelength
has been found very accurate when working with a polynomial degree between N =5 and N =8,
and has been used as the minimum sampling value in all the simulations presented in this article.
Below this value, the solution quickly develops signi�cant numerical oscillations during the prop-
agation. Such an abrupt transition is characteristic of methods with minimal numerical dispersion
and di�usion.
Typically, for two-dimensional simulations with a 100 000 points curvilinear grid, the memory

occupation is of the order of 32 Megabytes and the CPU time, for a simulation over 2000 time
steps, is of the order of 15min on an Ultra Sparc 1 (140MHz). For large three-dimensional
simulations in a heterogeneous medium, using a 5 000 000 points curvilinear grid, the memory
occupation is of the order of 1·5 Gigabyte and the CPU time, for a simulation over 2000 time
steps, is of the order of 1·5 h on a CM5 128 nodes.

TWO-DIMENSIONAL NUMERICAL EXAMPLES

Three sets of examples are included here to demonstrate the numerical e�ciency of the proposed
procedure. Validation of the method against classical two-dimensionl analytical or numerical so-
lutions have been extensively studied [52; 53] and will not be repeated here.
The �rst example is included here in order to examine the stability and the accuracy of the

proposed spectral element approximation together with the behaviour of absorbing boundary con-
ditions. Both concepts are studied by measuring the time evolution of the kinetic and potential
energy in a discretized domain.
In the second example, results obtained by the spectral element method (SEM) are compared

with the ones computed by more widely used numerical methods. The response of a semicircular
canyon under incidence of Rayleigh waves is presented. This canonical example was �rst computed
by Kawase [37] by means of the discrete wavenumber-boundary element method (DWNBEM) and
is often regarded as a benchmark. Kawase’s results have been checked recently by Ohminato and
Chouet [6] using a �nite di�erence method, and by Moczo and co-workers [54] using a hybrid
method.
Finally a study case was designed to assess the performance of the method in the presence

of lateral variations of topography and material properties. The ground motion is computed for
an irregular layer excited by an explosive source. As for previous example, this problem has no
analytical solution, so we computed the surface seismograms by means of the indirect boundary
element method (IBEM).
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Figure 1. Long-term stability of the energy–momentum-conserving time scheme for the case of a homogeneous elastic
medium, bounded by free surfaces, with a vertical force source inside the volume. The time evolution of the total and
potential energy is displayed for 105 time steps (�t=1·5ms). The total energy is shown to remain constant during

the simulation

Energy–momentum conservation and absorbing conditions

Numerical methods tend to accumulate error as the various computations are performed. Some-
times numerical damping is implicitly introduced in the calculations, solutions degradate in ampli-
tude and noise can prevail. In other cases amplitudes grow and also become noisy. Both situations
are obviously undesirable, as we require the numerical method to be reliable and stable. First,
we verify the stability of the SEM and check energy conservation inside a rectangular domain
with free boundaries. In this example a force is applied at an interior point and the generated
waves are allowed to propagate freely in the domain. Assuming there is no damping, waves
bounce back and forth in the model. The energy provided by the applied force must be con-
served within the domain. For all the elements, the elementary kinetic and potential energies
are computed by means of Ue

c =
∫
1
2�(@u

e
i =@t)

2 dV and Ue
p =

∫
1
2�

e
ij�

e
ij dV, respectively. Summa-

tion on all the elements is then performed, in order to obtain the total potential and kinetic
energies.
The region under study has a size of 1600× 1600m and is discretized using 484 spectral

elements with a polynomial order of N =5, the total number of points of the global grid be-
ing 12 321. The material properies of the medium are cL = 3200m s−1, cT = 1847·5m s−1 and
�=2200 kgm−3. The vertical force is applied exactly at the centre of the model in (x; z)= (800;
800) m and its time variation is a Ricker wavelet having a central frequency of 15Hz. Figure 1
depicts the potential and total energies for 105 time steps (from 0 to 150 s), the elementary time
step being �t=1·5ms. We see a constant conversion between kinetic and potential energy and
remark that, even after such a high number of time steps, the total energy remains constant. The
method exhibits good stability properties.
Instead of free boundaries, we now specify absorbing conditions. According to equation (19), the

necessary tractions in the variational principle are given using expression (16), which essentially
corresponds to dampers. Figure 2 shows, for the same force and the same model as in previous
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Figure 2. (Upper �gure) Energy evolution for the case of a homogeneous elastic medium, limited by absorbing boundaries,
when a vertical force source is applied inside the volume. The total energy decreases rapidly as the energy is radiated
outside the domain. Small spurious re
ections may appear for waves impinging on the boundaries at small incidence angles,
due to the zeroth-order approximation used here. These spurious re
ections, that keep a small fraction (less than a few
percent) of the total energy in the system, are absorbed as soon as they reach a new absorbing boundary. Due to the scale,
this e�ect is hardly visible on this �gure and can only be observed when zooming on the area indicated by an arrow a.
(Lower �gure) Close-up of the energy residual. Potential energy converts into kinetic energy and vice versa around t=1 s

due to a parasitic corner e�ect. The spurious re
ections are absorbed around t=1·45 s

example, the total energy. Before the waves reach the boundary, the total energy inside the domain
remains constant, but once the waves start to interact with the absorbing edges, it rapidly tends
to a value close to zero. The curve exhibits two steps that correspond respectively �rst to the
absorption of the P wave (fastest wave) and second to that of the S wave (slowest wave). A
small residual is visible on the close-up presented on the same �gure, due to the fact that the
paraxial approximation used is exact only along the normal to the boundary, and becomes less
and less accurate with an increasing angle of incidence. This arti�cial residual is itself absorbed
after having propagated through the grid, around t=1·45 s. The conversion between kinetic and
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potential energy around t=1 s is attributed to a parasitic corner e�ect at a time when the di�erent
wavefronts reach the four corners of the grid.

The semicircular canyon

In the study of wave propagation in and around irregular topographies, a well-known example of
Trifunac [55], namely the di�raction of a plane SH wave by a semicircular canyon at the surface
of a half-space, it was possible to reach this classical analytical solution because of the separability
of the reduced wave equation in the half-space, when cylindrical co-ordinates are used. Dealing
with the propagation of P-SV waves, variables in the Navier equation in the half-space cannot
be separated anymore. No analytical solution is attainable and use must be made of numerical
methods. Wong [56] and S�anchez-Sesma and Campillo [38] studied the problem in the frequency
domain and produced results for incident P, SV and Rayleigh waves using numerical schemes of
integral type. Kawase [37] also resorted to boundary integrals, but computed the required Green’s
functions using the discrete wavenumber method. His results have been veri�ed extensively [6; 54],
therefore they are trustworthy. The model is characterized by cL = 2000m s−1, cT = 1000m s−1

(Poisson’s ratio �=1=3) and �=1000 kgm−3. The radius of the canyon is 1000m. In this paper
we choose to present the results for an incoming Rayleigh wave. To simulate such an excitation,
the displacement, velocity and acceleration �elds of the unperturbed Rayleigh wave solution are
given at the initial time, and are computed from the exact solution of the problem in a half-space.
Figure 3 shows two snapshots of the displacement �eld at time t=0 and t=6 s for a Rayleigh
wave whose horizontal component varies as a Ricker wavelet having a fundamental frequency of
1Hz. The computational grid of spectral elements is illustrated in the same �gure. Note that the
mesh is re�ned in the neighbourhood of the canyon. The grid is composed of 1960 elements, the
polynomial order used is N =5, the total number of points of the global grid being 49 596. We
propagate the wave�eld for 8 s (6400 time steps of �t=1·25ms each). On all the boundaries
of the grid except the free surface, an absorbing condition is imposed. When the wave hits the
canyon a pattern of di�racted waves is produced. In Figures 4 and 5, for horizontal and vertical
components respectively, the displacement �eld is depicted along with Kawase’s [37] plots. The
71 receivers are located exactly at the free surface between x=−3 and x=3km. The agreement
is excellent and our results are free of numerical artefacts. The stability of the generated surface
wave is veri�ed since it propagates correctly with no dispersion and with the appropriate velocity.
Several comparisons were done with other computations by Kawase for incident P or SV waves.
In all cases (not presented here) the agreement was very good. It is instructive to examine the
spectral ratio for the displacement with respect to the unperturbed horizontal displacement of the
surface wave. In Figure 6 we present the normalized motion, at the central Ricker frequency, along
the line of receivers located at the surface. A large ampli�cation on the left side of the canyon
and a great reduction at the opposite rim are clearly observed. The presence of the canyon creates
a shadow zone, and this is the reason why, in some cases of engineering interest, trenches are
used as devices for vibration insulation.

An irregular layer

To study the behaviour of the method in the presence of lateral irregularity and spatial variation
of material properties, the ground motion is computed for an irregular layer in the case of an
explosive source located close to the bottom of the layer. As for previous example, this problem has
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Figure 3. Snapshots illustrating the displacement �eld as well as the spectral element grid at the initial time (upper �gure)
and at time t=6 s (lower �gure) for the problem of a semicircular canyon excited by a Rayleigh wave. On all the
boundaries of the grid except the free surface, an absorbing condition is imposed. We clearly see a P wave, generated
by conversion at the canyon pro�le, a re
ected Rayleigh wave, as well as numerous weak phases propagating inside the
canyon. Each �gure is normalized independently with respect to the maximum of the norm of the displacement vector at

the corresponding time

no analytical solution, so we computed the surface seismograms by means of the indirect boundary
element method (IBEM). In the IBEM, the homogeneity of the regions involved is assumed. This
allows us to make use of the well-known exact Green’s function for the full elastic space [38; 57].
The application of the IBEM in the context of irregular layers has been described elsewhere [39].
The spectral element computational grid is depicted in Figure 7, together with the source and
receivers locations. The grid is composed of 874 elements and a polynomial order of N =5 has
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Figure 4. Horizontal displacement synthetic seismograms calculated along the free surface of the semicircular canyon of
Figure 3 excited by a Rayleigh wave. The upper �gure is a copy of the results published by Kawase (1988), Figure 14(a),
the lower �gure represents our results drawn at the same scale. The overall agreement is very good apart from some weak

parasitic oscillations that appear in the DWNM calculations after t ' 6 s

been used, leading to a global grid made of 22 176 points. The time step used is �t=6·25ms,
and the wave�eld is propagated for 25 s (4000 time steps). The depth of the interface varies from
1 to 1·5 km, its geometry being described in kilometres by the function z=1 + 0·5 cos2(�x=2)
for |x|61, therefore the width of the irregularity is 2 km. The material properties of the media
are: cThs = 1500m s

−1 and cTlay = 500m s
−1 (in the half-space and in the layer respectively), with a

Poisson’s ratio of �=1=3 in both cases; the densities are �hs = 2000 kgm
−3 and �lay = 1000 kgm

−3.
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Figure 5. Vertical displacement synthetic seismograms calculated along the free surface of the semicircular canyon of
Figure 3 excited by a Rayleigh wave. The upper �gure is a copy of the results published by Kawase [37] (Figure 14b),
the lower �gure represents our results drawn at the same scale. The overall agreement is again very good, with the same

weak artefacts in the DWNM calculations, as in Figure 4

On all the boundaries of the grid except the free surface, an absorbing condition is imposed. The
source, located at 3000m in depth and 1000m away from the topography symmetry axis, is
assumed to be isotropic (explosion) with a time history given by a Ricker wavelet with a central
frequency of 0·75Hz. Synthetic seismograms are given for 51 receivers located along the 
at free
surface between x=−2 and x=2km; the spatial interval between stations is 80m.
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Figure 6. Spectral amplitude, at the Ricker central frequency, calculated along the free surface of the semicircular canyon
of Figure 3 excited by a Rayleigh wave. Our solution (solid line) is very close to the results of Kawase (points). Near
the right edge of the canyon, Kawase’s results seem to present a signal excess (the spectral amplitude seems to be slightly

too high) that is probably due to the weak oscillations observed in Figures 4 and 5

Figure 7. Model and grid used to compute the seismic response of an irregular layer with a 
at free surface. The excitation
is provided by a linear explosive source located 3000m deep in the model, and 1000m away from the symmetry axis
of the topography of the interface. On all the boundaries of the grid except the free surface, an absorbing condition is

implemented
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Figure 8. Synthetic seismograms along the 
at free surface of the irregular layer of Figure 7 excited by a low frequency
explosive source located in the underlying half-space. Results obtained with SEM (solid line) and IBEM (dashed line)
are superimposed. The overall agreement is very good during the �rst 10–12 s, then small di�erences of weak amplitude

appear

The waveforms obtained with both IBEM and SEM are superimposed and are plotted with solid
and dashed lines, respectively, in Figure 8. The agreement is very good and, given the fact that
the solutions are obtained with completely di�erent methods, fully validates both the SEM and the
IBEM. Some small di�erences can be seen in the later parts of the seismograms. Understanding
the origin of these di�erences will require additional work. In any case, both methods are reliable.
When we analyse the ground motion, we notice that the last stations record a P �rst arrival, fol-

lowed by a P wave multiple, generated at the plane interface between the layer and the half-space.
Then, surface waves arrive. Apparently, no multiples can be seen at the centre of the array. At
the right side of the irregularity, a shadow zone exists, just as in the previous example. Displace-
ments near the right edge of the bump are relatively small, when compared to the other traces.
As distance from this protected area increases, the �rst arrival and its multiple are reconstructed.
The maximum displacement is recorded inside the valley, where constructive interferences occur.
On the other hand, the duration of the vibrations is longer at the extreme stations. P-SV re
ection
energy rapidly decays, while surface waves propagate further.
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THREE-DIMENSIONAL NUMERICAL EXAMPLES

The three-dimensional response of a hill

In previous sections, we studied the stability and the accuracy of computations using the SEM
in two-dimensional cases. Now we describe the application of this technique to study a three-
dimensional smooth topographical pro�le. Recent studies [58; 59] have pointed out the important
e�ects of a small three-dimensional hill structure and their implications for strong ground motion.
The mesh for this model is depicted in Figure 9. The topography is described by a bi-variate
Gaussian function (the maximum height is 180m, the standard deviations along the two perpen-
dicular directions are 250 and 125m respectively) and its horizontal projection is elliptic. The
material properties of the medium are cL = 3200m s−1, cT = 1847·5m s−1 and �=2200 kgm−3.
The size of the model is 2080× 2080× 1050m and the height of the hill is 180m. The mesh
is composed of 26× 26× 14 elements, with a polynomial order of N =8 used in each direction,
leading to a total number of collocation points of 4 935 953. On the vertical boundaries of the grid,
periodic conditions are imposed, meaning that the model is in�nitely repeated identically along
the two horizontal directions. The total duration of the simulation is 0·8 s, with a time step of
�t=0·5ms. Such a duration is short, but intrinsically limited by the arrival time of the parastic
waves induced by the use of periodic boundary conditions, due to the �nite size of the model.

Figure 9. Three-dimensional model: a 3-D Gaussian shape topography is considered in the case of a homogeneous elastic
half-space. The size of the model is 2080× 2080× 1050m. The height of the hill is 180m. The mesh is composed of
26× 26× 14 elements, with a polynomial order of N =8 used in each direction. The total number of collocation points

is 4 935 953. On vertical boundaries, periodic conditions are imposed
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Figure 10. Snapshots at time t=0 (top), 0·4 (middle) and 0·6 s (bottom) for the model of Figure 9 excited by an S
wave polarized along the direction of the small axis of the topography. The vertical cut is done along the direction of
polarization. The displacement vector is projected onto the cut plane. The topography generates an important P wave as

well as a Rayleigh wave that propagates down the slope

The incoming vertical plane shear wave is polarized along the small axis, and the time vari-
ation is given by a Ricker pulse having a central frequency of 10·26Hz. Note that the incident
wavelength is 180m, precisely the height of the topography.
Figure 10 illustrates three snapshots of particle displacement. They correspond to a vertical

cut along the minor axis at di�erent times (t=0; 0·4 and 0·6 s). In the upper plot the incident
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Figure 11. Displacement �eld at the surface, for the model of Figure 9, projected onto an horizontal plane (top view).
The two snapshots are drawn at time t=0·4 (top) and 0·6 s (bottom) as in Figure 10. The elliptic base of the
hill is represented by a dashed line. Clearly-visible Rayleigh and di�racted waves preferentially propagate along the

small axis direction

shear wave has not reached the free surface yet, the apparently irregular structure of the plot is a
visual e�ect due to the grid geometry (having a non-uniform grid spacing inside each element).
On the other plots, the direct wave reaches the free surface where it is re
ected downwards, and
signi�cant elastic wave di�raction appears. On the second plot we can see the main re
ected wave
propagating towards the lower boundary, and the other waves generated by the presence of the
topography. One can recognize the P wave that travels ahead. One can remark the focusing of
various di�racted waves inside the hill. This phenomenon gives rise to a signi�cant ampli�cation
of the ground motion. At this time (t=0·4 s) the maximum horizontal displacement appears to
be at the inner base of the irregularity. On the other hand, large vertical displacements can also
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Figure 12. Transfer function at the Ricker fundamental frequency along two lines of receivers located at the surface of
the model. Upper �gure: response recorded along the minor axis. Lower �gure: response recorded along the major axis.
The transfer function is computed as the ratio between the spectral amplitude of the component of the displacement vector
along the direction of polarization of the plane wave source and the spectral amplitude of that incident wave. In each
�gure, two di�erent sources are considered, namely a vertically incident S wave polarized either along the minor or along
the major axis. A strong variation of the recorded ampli�cation pattern can be observed, underlining the need for 3-D

simulation of site ampli�cation even in the case of rather simple models

be seen on the topographical pro�le. We interpret these ripples as the birth of Rayleigh waves.
In fact, the third snapshot clearly shows the familiar displacement pattern of these waves, with
their typical elliptical polarization. Note that the hole in the re
ected wave front is being �lled
by the local di�raction. The snapshots depict many other waves produced in this process. We can
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recognize in particular several phases of shear waves and the SP head waves di�racted by the
interaction of the P wave with the free surface.
Two snapshots of the surface motion, normalized independently with respect to the maximum

of the norm of the displacement vector at the surface, are given in Figure 11 at the same time
as the last two snapshots of Figure 10 (t=0·4 and 0·6 s). They show from another perspective
(top view) the weak emission of a di�racted P wave at the surface and the signi�cant generation
of Rayleigh waves, particularly along the minor axis of the topography. Ground motion along
this direction is remarkably stronger than for the other direction. This clearly demonstrates the
importance of three-dimensional e�ects in non-symmetric stuctures and con�rms the existence of
preferred directional resonances [60; 61]. On the second snapshot, we also clearly see a numerical
parasitic e�ect (arti�cial waves coming from the boundaries of the model) that are due to the
periodic boundary conditions used on the vertical edges of the model.
The di�erence between ground motions along two perpendicular seismic lines is con�rmed

in Figure 12, where displacement transfer functions (computed at the Ricker central frequency)
are plotted along these lines. The transfer function is computed as the ratio between the spectral
amplitude of the component of the displacement vector recorded along the direction of polarization
of the source, and the spectral amplitude of the plane wave. Two di�erent sources are considered: a
S wave polarized along the minor axis of the topography, and a S wave polarized along the major
axis. In both cases, the transfer function has been computed for the component of the displacement
along the same axis as the direction of polarization of the incident wave. We do not observe any
signi�cant di�erence in the maximum ampli�cation level. However, the three-dimensonal e�ect
is revealed by the completely dissimilar movement pattern illustrated in both �gures. Along the
minor axis, the response shows large oscillations that suggest important di�erential motion. We
know that this is due to a modulation of the signal by Rayleigh waves that travel downwards
along the slope, preferentially along the minor axis of the topography as seen before. On the other
direction, the e�ects on ground motion are much smaller. The highest perturbation is restricted to
a narrow spatial zone around the summital area.

CONCLUSIONS

A new tool to simulate elastic wave propagation in arbitrary models has been presented. The
formulation of this spectral element method (SEM) has been detailed. The technique is suitable to
an e�cient parallel implementation and has a low computational cost. We illustrated the method
with two simple cases in which the stability and consistency of the approach have been underlined.
More realistic models were then considered. The two-dimensional examples (a semicircular canyon
and an irregularly strati�ed medium) o�ered the opportunity to validate the SEM by comparing our
synthetic seismograms to those obtained with very di�erent methods. The agreement between the
results has been found to be very good. Finally, a three-dimensional model has been discussed. The
di�erent tests presented underline the potentialities of the SEM. This technique appears to ful�ll
the requirements (low cost and high accuracy) of modern computational seismology. It seems to be
a powerful tool for e�cient prediction and interpretation of site e�ects in seismic ground motion.
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