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Wave propagation near a fluid-solid interface:
A spectral-element approach

Dimitri Komatitsch∗, Christophe Barnes‡, and Jeroen Tromp∗

ABSTRACT

We introduce a spectral-element method for modeling
wave propagation in media with both fluid (acoustic) and
solid (elastic) regions, as for instance in offshore seismic
experiments. The problem is formulated in terms of dis-
placement in elastic regions and a velocity potential in
acoustic regions. Matching between domains is imple-
mented based upon an interface integral in the frame-
work of an explicit prediction-multicorrection staggered
time scheme. The formulation results in a mass matrix
that is diagonal by construction. The scheme exhibits
high accuracy for a 2-D test case with known analyti-
cal solution. The method is robust in the case of strong
topography at the fluid-solid interface and is a good alter-
native to classical techniques, such as finite differencing.

INTRODUCTION

In the context of seismic exploration, numerical modeling
of wave propagation has become an important research area,
mainly because of the increasing geological complexity of re-
gions in which seismic acquisition experiments are conducted.
The finite difference method is commonly employed for this
purpose. Unfortunately, the correct implementation of phys-
ical matching conditions at geological interfaces leads to sig-
nificant numerical difficulties, for example, modeling surface
topography, dipping or curved interfaces, and surface or in-
terface waves (e.g., Robertsson, 1996). The spectral-element
method (SEM) has been shown to be an efficient alternative
tool for modeling wave propagation in complex structures, in
particular in terms of accuracy, computational efficiency, and
suitability to parallel computation (Seriani et al., 1992; Priolo
et al., 1994; Casadei and Gabellini, 1997; Faccioli et al., 1997;
Komatitsch, 1997; Komatitsch and Vilotte, 1998; Seriani, 1998;
Komatitsch and Tromp, 1999).
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In marine seismic experiments, one needs to model wave
propagation in the acoustic part of the model (i.e., the water
layer) as well as in the underlying solid. In a classical SEM for-
mulated in terms of displacement (e.g., Komatitsch and Vilotte,
1998), continuity of displacement and velocity is enforced ev-
erywhere within the model. In the case of a boundary between
an inviscid fluid and a solid, however, the kinematic boundary
condition is perfect slip; therefore, only the normal compo-
nent of velocity needs to be continuous across the interface,
and thus the classical SEM method does not satisfy the correct
interface condition. Furthermore, using displacement in the
fluid introduces numerical artefacts associated with parasitic
modes (Kiefling and Feng, 1976; Hamdi et al., 1978). To over-
come these problems in the context of finite-element methods
(FEM), alternative formulations have been introduced, for in-
stance using displacement in the solid and pressure in the fluid
(Craggs, 1971; Zienkiewicz and Bettess, 1978), which has the
additional advantage of reducing the number of unknowns in
the fluid, or using nonstandard finite elements (Bermudez et al.,
1999). In the case of a fluid with homogeneous density in the
rest state, it has also been noted in FEM that it is numerically
more efficient to use a velocity potential rather than pressure
in the fluid, because in the former approach, the resulting dis-
crete system is symmetric and has a block-diagonal mass matrix
(Thompson, 1994).

We show here how this velocity potential formulation can
also be used in the context of a SEM and results in an accu-
rate and robust scheme even in the case of a distorted fluid-
solid interface. The discretization results in a global mass ma-
trix that is exactly diagonal by construction. This constitutes a
very significant advantage over classical FEMs, and over vari-
ants of the SEM based on a Chebyshev formulation, such as
that of Seriani et al. (1992) and of Priolo et al. (1994). More-
over, we show that the equations can be integrated in time
using a simple explicit predictor-multicorrector staggered time
scheme. With such a diagonal mass matrix, and such a simple
explicit time scheme, no inversion of a linear system is needed,
and therefore big models can be dealt with easily, and a very
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efficient implementation can be obtained on parallel comput-
ers. This had already been shown for the purely elastic 3-D case
by Komatitsch and Vilotte (1998) and Komatitsch and Tromp
(1999). Although the tests presented here are 2-D, the formu-
lation itself and the related algorithm are identical in 3-D.

FORMULATION OF THE PROBLEM

We consider a linear elastic rheology for the heterogeneous
solid, while the fluid is assumed to be inviscid and of ho-
mogeneous density. We restrict ourselves to isotropic materi-
als, although SEM can handle anisotropic materials accurately
(Seriani et al., 1995; Komatitsch et al., 2000). In the heteroge-
neous, elastic region, the linear wave equation can be written
in the strong form as

ρü = ∇ · σ + f,

σ = C : ε = λ tr(ε)I + 2με, (1)

ε = 1
2 [∇u + (∇u)T ],

where u denotes the displacement vector, σ the symmet-
ric, second-order stress tensor, ε the symmetric, second-order
strain tensor, C the fourth-order stiffness tensor, λ and μ the
two Lamé parameters, ρ the density, and f an external force.
The trace of the strain tensor is denoted by tr(ε), I denotes the
identity tensor, the tensor product is denoted by a colon, and
a superscript T denotes the transpose. A dot over a symbol
indicates time differentiation.

The wavefield in the acoustic, inviscid fluid is governed by
the conservation and dynamics equations which, neglecting the
effects of gravity, are (e.g., Landau and Lifshitz, 1959):

ρv̇ + ∇p = 0,

(2)
ṗ + ρc2∇ · v = 0,

where v denotes the velocity vector, p pressure, and c = √
κ/ρ

the speed of acoustic waves, κ being the bulk modulus of the
fluid.

Assuming that the density ρ is homogeneous throughout the
fluid, we have ∇×v = 0, that is, the acoustic fluid is irrotational
(Landau and Lifshitz, 1959). Thus the velocity v can be written
as the gradient of a scalar potential φ. Substituting the defi-
nition v = ∇φ in equation (2), we can eliminate pressure and
obtain a second-order system that only involves the velocity
potential:

∇2φ = c−2φ̈. (3)

Here ∇2 is the Laplace operator.
To couple the two media at a fluid-solid interface, we have

to ensure the continuity of traction τ = σ · n̂, where n̂ denotes
the unit normal to the interface. From equation (2) we see that
the pressure p equals −ρφ̇, which implies that the continuity
of traction may be expressed as

τ = ρφ̇ n̂. (4)

The kinematic boundary condition of continuity of the normal
component of velocity is

n̂ · ∇φ = n̂ · u̇. (5)

The free surface boundary condition is easily implemented
in a weak formulation since the integral of traction along
the boundary simply vanishes (e.g., Komatitsch and Vilotte,
1998).

On the remaining, artificial boundaries, outgoing waves need
to be absorbed. In the elastic solid, this absorbing boundary
condition may be approximated by dampers, that is, by re-
lating the traction to velocity (Clayton and Engquist, 1977;
Komatitsch and Vilotte, 1998):

τ = cpρvn + csρvt , (6)

where cp = √
(λ + 2μ)/ρ denotes the P-wave speed, cs =√

μ/ρ the S-wave speed, and vn and vt the normal and tangen-
tial components of velocity along the absorbing boundary. In
the acoustic fluid, using a similar idea, the absorbing boundary
condition may be approximated by a simple Sommerfeld-like
condition (e.g., Thompson and Pinsky, 1996):

n̂ · ∇φ = −c−1φ̇. (7)

Note that the absorbing conditions (6) and (7) are only approxi-
mate, and small reflections from the artificial boundaries should
be expected. In practice, the amplitude of these reflections is
of the order of a few percents of the amplitude of the direct
wave. Improved conditions can be used if needed (Quarteroni
et al., 1998), but are less straightforward to implement. Note
also that the absorbing boundary conditions are optimal for
waves impinging with normal incidence and rapidly become
less accurate when the angle of incidence differs from normal
(Clayton and Engquist, 1977).

DISCRETIZATION

We first rewrite the coupled system of equations (1)–(7) in
a variational or weak form by dotting it with an arbitrary test
vector w in the solid, multiplying with an arbitrary test func-
tion w in the fluid, and integrating by parts over the region of
interest (e.g., Thompson, 1994):
∫

�s

ρw · ü d� +
∫

�s

∇w : C : ∇u d� −
∫

�i

w · τ d�

−
∫

�s
abs

w · τ d� = 0, (8)

∫
� f

c−2wφ̈ d� +
∫

� f

∇w · ∇φ d� +
∫

�i

w(n̂ · ∇φ) d�

+
∫

�
f

abs

c−1wφ̇ d� =
∫

� f

w f d�. (9)

The solid and fluid regions of the model are denoted by �s and
� f , respectively, � f

abs denotes the acoustic absorbing boundary,
�s

abs denotes the elastic absorbing boundary, and �i denotes the
interface between the two media. The material parameters of
the solid, C and ρ, can be spatially heterogeneous. The source
term f has been placed in the acoustic region; of course, it
may also be placed in the solid. Imposing the continuity con-
ditions (4) and (5) for the traction and for the normal velocity
at the interface, we can rewrite the system (8)–(9) as
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�s

ρw · ü d� +
∫

�s

∇w : C : ∇u d� −
∫

�i

ρ0w · n̂ φ̇ d�

−
∫

�s
abs

w · τ d� = 0, (10)

∫
� f

c−2wφ̈ d� +
∫

� f

∇w · ∇φ d� +
∫

�i

w u̇ · n̂ d�

+
∫

�
f

abs

c−1wφ̇ d� =
∫

� f

w f d�, (11)

where ρ0 denotes the constant density of the fluid. This weak
formulation forms the basis for the discretization of the prob-
lem in the next two sections.

Spatial discretization

At this stage, we introduce a Legendre spectral element dis-
cretization of the variational problem (10)–(11). The domain �

is first meshed in terms of a set of nel nonoverlapping elements
�e, as in a classical FEM. Each of these elements is individu-
ally mapped to a reference domain � = [−1, 1]nd (a square in
two dimensions, nd = 2; a cube in three dimensions, nd = 3)
based upon an invertible local mapping Fe : � → �e such
that x(ξ) =Fe(ξ). We make use of this mapping to go from the
physical domain to the reference domain, and vice versa.

On the reference element �, we introduce a set of local ba-
sis functions consisting of polynomials of degree N . More pre-
cisely, we first map each element back to the reference domain
�using the mappingFe. In each direction (ξ, η) of the reference
element, we introduce a set of N + 1 points ξi , i = 0, . . . , N ,
∈ [−1, 1], called the Gauss-Lobatto-Legendre (GLL) points,
which are the roots of

(1 − ξ 2)P ′
N (ξ) = 0, (12)

where P ′
N (ξ) is the derivative of the Legendre polynomial of

degree N . These (N +1) points can be computed by numerical
resolution of equation (12) (Canuto et al., 1988, p. 61). We
subsequently choose the set of basis functions to be products of
the (N +1) 1-D Lagrange interpolants h p(ξ), p = 0, . . . , N . By
definition, these polynomials have the fundamental property
that they vanish at all but one of the GLL points:

h p(ξq) = δpq . (13)

Consequently, the piecewise-polynomial approximation of any
given function u, in particular w, u, w, and φ, can be written on
the reference element as

ue(ξ, η) =
N∑

p=0

N∑
q=0

ue(ξp, ηq)h p(ξ)hq(η). (14)

To compute the gradient of a given function, we first differ-
entiate equation (14) with respect to each variable:

∂ξue(ξ, η) =
N∑

p=0

N∑
q=0

ue(ξp, ηq)h
′
p(ξ)hq(η),

∂ηue(ξ, η) =
N∑

p=0

N∑
q=0

ue(ξp, ηq)h p(ξ)h
′
q(η), (15)

where h′ denotes the derivative of the 1-D Lagrange inter-
polant. We then use the chain rule to obtain ∂x = ξx∂ξ + ηx∂η

and ∂z = ξz∂ξ + ηz∂η. The components of the Jacobian matrix
ξx , ξz , ηx , and ηz are computed by differentiating the mapping
Fe. Note that in practice the Jacobian matrix, which only de-
scribes the geometry of the problem, need not be calculated
using polynomials of the same degree N as the interpolants,
provided the shape of the elements is smooth enough; poly-
nomials of degree 1 or 2 usually suffice for this purpose. The
mapping is therefore often referred to as “subparametric” in
the literature.

All the integrals appearing in equations (10)–(11) may now
be approximated at the element level using the GLL integra-
tion rule:

∫
�

uw d� =
nel∑
e=1

∫
�e

uewe d� 	
nel∑
e=1

N∑
i=0

ωi

×
N∑

j=0

ω j Je(ξi , η j )ue(ξi , η j )we(ξi , η j ), (16)

where ωi > 0 are the weights of the classical GLL integration
rule, that are independent of the element and that can be com-
puted numerically (Canuto et al., 1988, p. 61), and Je is the
Jacobian associated with the mapping Fe from the element �e

to the reference square �. Note that equation (16) involves a
polynomial of degree 2N , since it is the product of two polyno-
mials of degree N , and that the GLL integration rule with N +1
points is exact only for polynomials of degree ≤ 2N −1. There-
fore the integration is never exact, even in the case of simple
rectangular (i.e., nondeformed) elements with a constant Jaco-
bian. This choice of subintegration might seem surprising, but
it is justified by the huge advantage of resulting in a diagonal
mass matrix, and thus in a drastic reduction of the complexity
of the algorithm and of the related CPU time (e.g., Komatitsch
and Vilotte, 1998). This is the main difference between the
SEM presented here and more classical FEM or SEM based
on Chebyshev formulations, such as that of Seriani et al. (1992)
and Priolo et al. (1994).

Let wN = (wx , wz)T , wN , uN = (ux , uz)T , and φN denote the
piecewise-polynomial approximations of the test functions for
the solid, the test function for the fluid, the displacement in
the solid, and the velocity potential in the fluid, respectively.
Making use of equations (10) and (11), and multiplying equa-
tion (11) by the density of the fluid ρ0, the discrete variational
problem to be solved can thus be expressed as follows: For all
time t , find uN and φN such that for all wN and wN we have

〈wN, ρüN 〉 + as(wN , uN ) − As(wN , φN )�i = 〈wN , τ N 〉�s
abs

,

〈
wN ,

ρ0

c2
φ̈N

〉
+ a f (wN , φN ) + A f (wN , uN )�i

= −
〈
wN ,

ρ0

c
φN

〉
�

f
abs

+ 〈wN , ρ0 fN 〉. (17)

Discrete expressions for all the terms in equation (17) are given
in Appendix A.

Please note that in the weak formulation below (equation 11) one should implement a Dirichlet condition rather than a Neumann 
condition at the free surface of the water layer, because the physical condition is that pressure should be zero there, which implies that 
the time derivative of the potential should be zero since pressure is equal to minus the density times the time derivative of the potential, 
as mentioned above equation (4). 
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Temporal discretization

After the spatial discretization in terms of spectral ele-
ments, imposing that equation (17) holds for any test functions
(wN , wN ), we are led, as in a classical FEM, to solve a coupled
system of ordinary differential equations in time. Let U and
� denote the global vectors of unknown displacement in the
solid and velocity potential in the fluid, respectively. We can
rewrite the system (17) in matrix form as:

[
Ms 0

0 −M f

](
Ü

�̈

)
+

[
Ds A

AT D f

](
U̇

�̇

)

+
[

Ks 0

0 −K f

](
U

�

)
=

(
0

F

)
, (18)

where Ms and M f are the mass matrices in the solid and fluid,
respectively, A is a coupling matrix between the two media,
Ds is a matrix resulting from the absorbing condition on the
boundary of the solid region, D f is a matrix resulting from the
absorbing condition on the boundary of the fluid region, F is
the source term in the fluid, and Ks and K f are the stiffness
matrices in the solid and in the fluid, respectively. For detailed
expression of these matrices obtained from equations (A.1)–
(A.3) in Appendix A, see Thompson (1994). Note that A is very
sparse because it represents the coupling between elements
situated on both sides of the fluid-solid interface, and therefore
it is nonzero for these coupled degrees of freedom only.

As mentioned above, one should note that a desirable prop-
erty of the SEM, which results in a very significant reduction
in the complexity and in the cost of the resolution algorithm, is
the fact that the mass matrices Ms and M f in equation (18) are
diagonal by construction. This results from the use of Lagrange
interpolants (14) at the GLL points in conjunction with GLL
quadrature (16) (e.g., Komatitsch and Vilotte, 1998). This is
also the reason why the velocity-potential formulation has been
preferred over the classical formulation in terms of pressure,
because in the latter case the formulation does not have this
desirable property since the mass matrix has an additional con-
tribution from the coupling matrix A (Thompson, 1994).

Time discretization of the system of second-order ordi-
nary differential equations (18) is achieved using an explicit
Newmark scheme written in a prediction-multicorrection for-
mulation (Hughes, 1987, chapter 9; Zienkiewicz and Taylor,
1989, chapter 11). For a general second-order system of the
form

M d̈ + C ḋ + K d = F, (19)

the classical explicit Newmark scheme is written as

M d̈n+1 + C ḋn+1 + K dn+1 = Fn+1, (20)

where

dn+1 = dn + �t ḋn + �t2

2
d̈n, (21)

and

ḋn+1 = ḋn + �t[(1 − γ )d̈n + γ d̈n+1]. (22)

It is conditionally stable, and it can be shown (e.g., Hughes,
1987) that it is second-order accurate if and only if γ = 0.5,
which is the value that we use in this article. At the initial time

t = 0, zero initial conditions are assumed (i.e., d = 0 and ḋ = 0).
Let us mention here that in a SEM, since the spatial discretiza-
tion is based on high-degree polynomials, and therefore very
accurate, it could be of interest to use more accurate (higher
order) time schemes if needed, as proposed for instance by
Tarnow and Simo (1994).

To take full advantage of the fact that the mass matrix
M is diagonal, the scheme is implemented in practice in an
equivalent iterative format based upon a staggered predic-
tion/multicorrection technique. At each time step, we use an
iterative scheme implemented as follows. We first compute pre-
dictors of the solution at the next time step in both domains.
Then, we update the solution in one domain (either the fluid
or the solid region) by solving the corresponding part of equa-
tion (18), using the predictors computed on the other side to
evaluate the coupling term. We subsequently compute the solu-
tion in the other domain, this time using the updated solution in
the first domain to evaluate the coupling term. We then iterate
by returning to the first step, now using the updated solution.
Such a scheme is classically called “staggered” in the litera-
ture. As mentioned above, since the mass matrix is diagonal,
and since we use an explicit scheme, no inversion of a linear
system is needed, as opposed to classical FEMs; therefore, the
solver is very efficient, in particular on parallel computers.

The reader is referred to Park and Felippa (1980) for a study
of staggered schemes, and to Hughes (1987) and Zienkiewicz
and Taylor (1989) for a thorough study of the Newmark family
of time schemes for hyperbolic problems, including a stabil-
ity analysis and further details regarding the staggered predic-
tion/multicorrection formulation.

NUMERICAL TEST: FLAT INTERFACE

In order to validate the method, we consider two homo-
geneous half-spaces in contact at a flat interface, as shown in
Figure 1. The lower part of the model is elastic, while the upper
part is acoustic, a water layer. The material properties of the
two layers are summarized in Table 1.

Poisson’s ratio ν is chosen to be 0.25, therefore the S-wave
speed in the elastic medium is related to the P-wave speed
by cS = cP/

√
3. The size of each domain is 6.4 km × 2.4 km,

which results in a global domain of 6.4 km × 4.8 km. The size
of the spectral elements, shown by the mesh in Figure 1, is
53.33 m × 53.33 m. We use a total of 120 × 90 = 10 800 spectral
elements. The polynomial degree is N = 5, therefore the to-
tal number of points of the global mesh is 271 051. Absorbing
conditions are used on all the edges of the grid to simulate two
half-spaces.

The source time function is a Ricker wavelet (i.e., the second
derivative of a Gaussian). As with a polynomial degree N = 5
the minimum number of points per wavelength required to
obtain an accurate simulation is close to 5, we can select a

Table 1. Material properties of the two homogeneous media
(acoustic and elastic) used in both numerical experiments: the
flat and the sinusoidal interfaces.

cP cS ρ

(m s−1) (m s−1) (kg m−3)

elastic 3400 1963 2500
acoustic 1500 — 1020
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dominant frequency of 10 Hz for the source. The onset time
is 115 ms. Since our goal is to validate the method, we need
a very accurate time scheme in the tests involving a compar-
ison to an analytical solution. Therefore, we use a small time
step of �t = 0.42 ms in these first tests. In practice, the explicit
Newmark scheme defined by equations (21)–(22) converges
after two corrector iterations at each time step. The signal is
propagated for 7150 time steps (i.e., 3 s).

Source and receivers in the acoustic region

In this first numerical experiment, both the source and the
receivers are located in the acoustic region. The source is

FIG. 1. Snapshots of the velocity vector at times t = 0.7 s (top)
and t = 1.26 s (bottom) for the test case of a flat acoustic-elastic
interface. The cells shown represent the mesh of spectral ele-
ments. The size of the domain is 6.4 km × 4.8 km, with the
fluid-solid interface located at a depth of 2.4 km (thick black
line). The cross indicates the position of the source, the dashed
line between the diamonds indicates the position of the 110
receivers used to record the seismograms shown in Figure 2.
The circle indicates the position of the receiver used for the
comparison with the analytical solution presented in Figure 4.
The direct (a) and reflected (b) P-waves can be observed in the
fluid, the transmitted P- (c) and P-to-S converted (d) waves
are clearly visible in the solid. Significant refracted waves are
also present, as can be seen on the second snapshot (e, f, g). On
the left side of the second snapshot, small parasitic reflections
from the sides, where approximate absorbing conditions are
implemented, can also be observed (N).

placed at a distance of zs = 500 m above the interface. The
110 receivers are located on a horizontal line at a distance of
zr = 533.33 m above the interface and at a horizontal offset
from the source varying between 925 m and 4425 m.

Figure 1 shows the acquisition geometry and snapshots of the
velocity vector field at times t = 0.7 s and t = 1.26 s. The corre-
sponding seismograms for the two components of velocity are
shown in Figure 2. Since the position of the receivers is chosen
to coincide with grid points, which are not evenly spaced be-
cause they are based on the GLL points, the receivers are not
exactly evenly spaced either. The time duration of the records
is 3.0 s. Using these two representations, several phases can be
distinguished (see Figure 3 for an illustration of the different
phases that are present in the experiment): (a) the direct P
wave, (b) the reflected P wave, (c) the transmitted P wave,
(d) the P-to-S converted wave, (e) the refracted P-wave con-
verted to an S-wave in the solid, (f) the refracted P-wave in

FIG. 2. Seismograms of the horizontal (top) and vertical (bot-
tom) components of the velocity field recorded at the line of
receivers shown in Figure 1. The direct P-wave (a) has a sig-
nificant amplitude mainly on the horizontal component due to
the geometry of the experiment. A strong refracted wave (g)
appears on both seismograms for medium and large offsets.
At medium offset, it is almost superimposed on the reflected
P-wave (b) and has a comparable amplitude. Phase (g) sep-
arates at large offset, and is particulary clear on the vertical
component between 2.0 and 2.8 s. The refracted P-wave (f),
which is the first arrival at large offsets, has a smaller ampli-
tude. Phases (N1) and (N2) are parasitic reflections due to the
only approximate absorbing conditions implemented at the top
and bottom boundaries.
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the fluid, and (g) the refracted S-wave converted to a P-wave
in the fluid.

In addition, spurious waves with small amplitude (N) are
reflected from the absorbing boundaries, and can be clearly
observed on the left of the second snapshot.

To further validate the method, we compare the numerical
solution obtained with our SEM to the analytical solution of the
problem. The analytical Green’s function (Pilant, 1979) is con-
volved numerically with the source time function. Although
this numerical convolution introduces some noise in the ref-
erence solution, it is negligible in practice. The comparison is
performed at receiver 40, the receiver closest to the source
being receiver 1. The two components of the numerical and
analytical velocity are shown in Figure 4. The difference be-
tween the two curves is also shown in the same plot using an
amplification factor of 5. The agreement is very good for all
phases, which shows that the SEM is highly accurate both for
direct and refracted phases. This further validates the coupling
algorithm since refracted waves are particularly sensitive to the
numerical accuracy of the coupling condition.

Source and receivers in the elastic region

In order to determine the accuracy of the waves propagating
in the solid, in particular the converted S-wave since it involves
a conversion at the interface, we place the receivers in the elas-
tic medium at a symmetric position on the other side of the
interface. With this configuration we are able to test the abil-
ity of the SEM to correctly model converted phases. Because
the analytical code we use to compute the reference solution
needs both the source and the receiver to be located on the
same side of the interface, we also place the source at a sym-
metric position below the interface. The recorded S-wave is a
P-to-S conversion reflected at the interface.

In Figure 5, we show the trace recorded at receiver 40 (solid
line). The explosive source in the solid generates a direct

FIG. 3. Illustration of the main phases that are present in the
first validation experiment with both the source and the re-
ceiver line located in the acoustic region. The solid lines repre-
sent P-wave rays, the dashed lines represent S-wave rays. The
refracted rays are shown with thick lines. Phases (a)–(g) are la-
beled both on the snapshots in Figure 1 and on the seismograms
in Figure 2.

P-wave (a); in addition, the receiver records the reflected P-
wave and the P-to-S converted phases that are almost super-
imposed (b). The difference between the analytical and numer-
ical solutions is very small, which shows in particular that the
S-wave converted at the interface is modeled accurately. The
difference is even smaller than in the previous test in the acous-
tic domain. This is due to the higher wave speed in the elastic
region, which implies that the number of points per wavelength
is higher.

NUMERICAL TEST: SINUSOIDAL INTERFACE

In order to demonstrate the suitability of the method for
models with bathymetry, we consider a model of the sea floor
with strong sinusoidal topography, as shown in Figure 6. A free
surface is implemented at the surface of the sea, an absorbing
condition at the bottom of the solid, and periodic conditions on
the vertical sides of the region of interest, in order to test the

FIG. 4. Horizontal (top) and vertical (bottom) components of
velocity recorded at receiver 40, whose exact location is in-
dicated by a circle in Figure 1. The solid line represents the
numerical solution, the dashed line, which is almost perfectly
superimposed to the solid line, is the analytical solution, and
the dotted line is the difference between the two curves ampli-
fied by a factor of 5. The agreement is excellent. Considering
the position of the receiver, a very significant contribution from
the second refracted wave (g) is recorded, around t = 1.65 s,
in addition to the direct P-wave (a), reflected P-wave (b), and
first refracted P-wave (f). Since refracted waves are known to
be very sensitive to the numerical accuracy of the matching
condition between domains, this test demonstrates that it is
accurately modeled.
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behavior of different kinds of boundary conditions. Note that
absorbing conditions could of course have been used instead
of the periodic conditions on the vertical edges, as in the previ-
ous test. All model parameters remain the same as before. The
source is located at xs = 2908.33 m at a depth of zs = 1700 m be-
low the surface of the sea. The line of receivers is composed of
50 receivers going from xr1 = 3200 m to xr50 = 5400 m at a depth
of zr = 1500 m. The horizontal mesh follows the shape of the
sea floor in order to be able to impose the matching condition
between domains at the sinusoidal interface. The length of the
records is 2.1 s and the time step is �t = 0.7 ms; therefore
the total number of time steps is 3000. The time step is chosen
to be relatively small because of the fact that GLL points are
clustered towards the edges of each spectral element, thereby
creating small grid cells that reduce the value of the Courant
stability condition of the explicit Newmark scheme. All other
parameters remain the same as in the flat model simulation.

Snapshots of the velocity vector shown in Figure 6 illustrate
the complexity of the wave field, in particular the presence

FIG. 5. Horizontal (top) and vertical (bottom) components of
velocity recorded by a receiver located in the elastic medium,
when an explosive source is placed in the same medium. The re-
ceiver records the direct P-wave (a) and a superposition of the
reflected P-wave and P-to-S converted waves (b). The dashed
line, which is almost superimposed on the solid line, is the an-
alytical solution, the dotted line is the difference between the
two curves amplified by a factor of 5. These residuals are very
small, which demonstrates the accuracy of the modeling tech-
nique, in particular for the S-wave converted and reflected at
the interface.

of curved reflected and transmitted waves, triplications, and
interface waves. Seismograms of the two components of veloc-
ity recorded at the line of receivers are shown in Figure 7. The
main phases that can be distinguished are (a) the direct P-wave,
(b) the strongly curved reflected P-wave on the first anticline
on the right, (c) the P-wave reflected off the first anticline on
the left [symmetric of phase (b)], (d) the P-wave reflected off
the central syncline, which undergoes a time delay and there-
fore a triplication, (e) various transmitted P-waves, (f) various
transmitted P-to-S converted waves, (g) the P-wave reflected
at the surface of the sea, and (h) a slow phase traveling along

FIG. 6. Snapshots of the velocity vector at times t = 0.875 s (top)
and t = 1.575 s (bottom) for a sea bottom with strong sinusoidal
topography. The cross indicates the position of the source, and
the dashed line between the diamonds is the line of receivers.
Strongly curved reflected waves (b, c), triplications due to the
topography of the sea floor (d), transmitted P-waves (e), and
transmitted S-waves (f) can be observed. The direct P-wave
(a) undergoes total reflection at the surface of the sea (g). The
slow event traveling along the sea floor on the second snapshot
(h) is interpreted to be a Stoneley wave. This slow event can
be observed mainly on the second snapshot. On both vertical
sides of the mesh, waves coming back from the other side of the
mesh, due to the periodic conditions used in this simulation,
can be observed.
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FIG. 7. Seismograms of the horizontal (top) and vertical (bot-
tom) components of velocity recorded at the line of receivers
shown in Figure 6 for the case of a sea floor with strong sinu-
soidal topography. In addition to the strong direct P-wave (a),
the curved reflected phases (b) and (c) and the triplication (d)
can be clearly observed.

the interface, which is interpreted to be a Stoneley wave (Biot,
1952).

CONCLUSIONS

We have shown that the use of a velocity potential in homo-
geneous acoustic regions allows us to use the spectral element
method for modeling wave propagation near a fluid-solid in-
terface. Correct matching conditions between the fluid and the
solid regions are enforced based upon a weak formulation of
the interface equations. The discrete system obtained is solved
in the context of an explicit prediction-multicorrection time
scheme. With this choice of parameterization, the mass ma-
trix is diagonal, unlike when pressure is used as the unknown
whithin the fluid, and unlike when the variant of the spectral-
element method based on a Chebyshev formulation is used. In
the case of a model with a flat interface, the agreement between
the spectral element solution and the analytical solution is ex-
cellent. The method is also able to take into account models
with strong topography at the fluid-solid interface. In that case,
the wavefield is complex and includes numerous triplications
and interface waves. Future work will focus on inhomogeneous
fluids for which a scalar velocity potential cannot be defined.
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APPENDIX A

DISCRETE WEAK FORMULATION

In this appendix, we present expressions for the terms ap-
pearing in the discrete weak formulation (17) of the fluid-solid
coupled system of equations (10)–(11), after having multiplied
equation (11) by the density of the fluid ρ0. The volume terms
in the solid and in the fluid are
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(A-1)

The coupling terms between the fluid and the solid regions,
which involve 1-D integration along the interface �i , φ being
known from the acoustic side and u̇ being known from the
elastic side, are
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(A-2)

and the absorbing terms, which involve 1-D integration along
the absorbing edges �s

abs and �
f

abs in the fluid and solid regions
are
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(A-3)

We have used the abbreviated notation ρ i j
e = ρe(ξi , η j ), wi j

e,N =
we,N (ξi , η j ), and so on in the above expressions. The sums

∑
es,∑

ef,
∑

eis,
∑

eif,
∑

eas, and
∑

eaf correspond to sums over the
elements in the elastic medium, fluid medium, along the cou-
pling interface on the solid side, coupling interface on the fluid
side, absorbing boundary in the solid, and absorbing bound-
ary in the fluid, respectively. The 1-D Jacobian (i.e., the length
element along the interface) is denoted by J 1D

e . These expres-
sions are used in equation (17) to build the global linear system
(18). The reader is referred to Komatitsch and Vilotte (1998)
and Komatitsch et al. (2000) for further details regarding the
spectral element formulation.




