
A
i

R

s
b
a
s
n
t
�
i

E

a
©

GEOPHYSICS, VOL. 73, NO. 4 �JULY-AUGUST 2008�; P. T51–T61, 10 FIGS., 2 TABLES.
10.1190/1.2939484
n unsplit convolutional perfectly matched layer improved at grazing
ncidence for seismic wave propagation in poroelastic media
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ABSTRACT

The perfectly matched layer �PML� absorbing technique
has become popular in numerical modeling in elastic or po-
roelastic media because of its efficiency in absorbing waves
at nongrazing incidence. However, after numerical discreti-
zation, at grazing incidence, large spurious oscillations are
sent back from the PML into the main domain. The PML then
becomes less efficient when sources are located close to the
edge of the truncated physical domain under study, for thin
slices or for receivers located at a large offset. We develop a
PML improved at grazing incidence for the poroelastic wave
equation based on an unsplit convolutional formulation of the
equation as a first-order system in velocity and stress. We
show its efficiency for both nondissipative and dissipative
Biot porous models based on a fourth-order staggered finite-
difference method used in a thin mesh slice. The results ob-
tained are improved significantly compared with those ob-
tained with the classical PML.

INTRODUCTION

In Komatitsch and Martin �2007�, we presented an improved ab-
orbing boundary technique for the purely elastic wave equation
ased on an unsplit convolutional perfectly matched layer �CPML�
nd applied it to the seismic wave equation, written as a first-order
ystem in velocity and stress, discretized based on a second-order fi-
ite-difference technique in space and time. We showed that this
echnique is more efficient than the classical perfectly matched layer
PML� at absorbing waves impinging the edges of the model at graz-
ng incidence.
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However, real geophysical media often exhibits more complex
heologies, for instance, with mixtures of solids, gases, and liquids.
he analysis of elastic waves propagating in fluid-saturated porous
edia might provide better insight for petrophysical imaging and

xploration of natural resources such as hydrocarbon and gas-hy-
rate reservoirs than single-phase theories represented mainly by
lastic or viscoelastic models. The effects of pore pressure, fluid vis-
osity, porosity, permeability, and slip velocity between phases can
e taken into account, and these additional parameters allow the cou-
ling of the propagation of seismic waves and local diffusion of vis-
ous fluids. For instance, numerical modeling of plastic land mines
r composite materials consisting of granular solids and pore fluids
equires the use of poroelasticlike models �Zeng and Liu, 2001a� be-
ause two-phase models are more accurate than purely elastic or vis-
oelastic models in such a case. Hence, to more realistically model
he propagation of waves in heterogeneous media with attenuation
aused by fluids, we introduce a CPML for the first-order velocity-
tress formulation of the 2D poroelastic wave equation.

Depending on the wavelength at which porous media are studied,
ifferent models can be used. The Biot �1956a, 1956b� and Hickey
Hickey and Sabatier, 1997; Quiroga-Goode et al., 2005� models and
heir variants most commonly are used, although the Hickey model
oes not dramatically change the amplitude of the waves �Quiroga-
oode et al., 2005�. In addition to viscous fluid dissipation, the Hick-

y model introduces thermomechanical coupling and involves po-
osity and mass-density perturbations as the porous medium is sub-
itted locally to pressure variations. In spite of all these improve-
ents, some authors consider that the Biot and Hickey theories lead

o similar waveforms �Quiroga-Goode et al., 2005�. For this reason,
e focus on Biot equations in this article.
In terms of numerical simulation of wave propagation, as ex-

lained in Komatitsch and Martin �2007�, the PML, first introduced
or Maxwell’s equations by Bérenger �1994�, has been developed to
fficiently absorb outgoing waves reaching the artificial edges of the
omputational domain. One of its most attractive properties is that it
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T52 Martin et al.
as a null reflection coefficient for all angles of incidence and all fre-
uencies before discretization by a numerical scheme. Unfortunate-
y, after discretization, its numerical efficiency is reduced drastically
t grazing incidence.

Regarding the numerical simulation of wave propagation in gen-
ral heterogeneous poroelastic media, the finite-difference method
s probably the most widely used technique �e.g., Zhu and Mc-

echan, 1991; Dai et al., 1995; Jianfeng, 1999; Pride et al., 2004;
asson et al., 2006; Sheen et al., 2006; Masson and Pride, 2007�. To

ntroduce the classical PML in this method in the case of elastic me-
ia, the wave equation usually is formulated as a first-order system in
ime based on velocity and stress �e.g., Collino and Tsogka, 2001�. In
he context of poroelastic wave-propagation studies performed
ased on finite differences, Zeng et al. �2001� applied a split-field
ormulation of the PML to the Biot system of equations for the dis-
lacement formulation, and Zeng and Liu �2001b� applied it to the
elocity-stress formulation. Ezziani �2005� developed a split ver-
ion of the PML applied to the Biot poroelastic equations, based on a
ore accurate hybrid spectral high-order finite-element technique.
Here we strive to improve the PML for the Biot poroelastic model

t grazing incidence, based on an unsplit CPML formulation written
n velocity and stress, which also is advantageous in terms of memo-
y storage, and implemented in a fourth-order finite-difference nu-
erical scheme.

able 1. Physical properties of the heterogeneous two-layer
odel under study.

hysical variables
Units
�IS�

Lower
layer

Upper
layer

olid density �s kg/m3 2588 2250

luid density � f kg/m3 952.4 1040

atrix tortuosity a 2.49 2.42

orosity � 0.25 0.1

ulk density
� � f � �1 � ��s

kg/m3 2179.1 2129

pparent density
w � a� f /

kg/m3 9486 25168

0.89 0.58

Pa 7.71�109 7.34�109

amping viscous
erm K

Ns/m4 3.38�105 3.33�106

ast pressure-wave
elocity in the solid
Pf

m/s 2817.33 1921

low pressure-wave
elocity in the solid
Ps

m/s 740 452.73

hear-wave velocity
n the solid VS

m/s 1587.4 1072.6

hear modulus � m/s 5.25�109 2.4�109

amé coefficient
n solid matrix �s

Pa 6.2�108 6.0�108

amé coefficient in
aturated medium
� �s � M�2

Pa 6.7271�109 3.069�109
THE POROELASTIC WAVE EQUATION: BIOT
MODEL AND VELOCITY-STRESS FORMULATION

The differential, or “strong,” form of the poroelastic wave equa-
ion can be written as �e.g., Carcione, 2007�

�� t
2us � � f� t

2w � � · �C: � us � �PfI�

� f� t
2us � �w� t

2w � � � Pf � K� tw

Pf � ��M � · us � M � · w , �1�

here us � �ui
s�i�1,D �D denotes the space dimension�; w � ��u f

us� and u f � �ui
f�i�1,D are, respectively, the solid, relative, and

uid displacement vectors; � is the porosity; and C is the stiffness
ensor of the isotropic elastic solid matrix, defined as

� ij
s � �C:��ij � �s� ij�kk � 2��ij

�ij �
1

2
� �ui

s

�xj
�

�uj
s

�xi
� , �2�

here indices i and j can be 1 or 2 here in 2D and with the Einstein
onvention of implicit summation over a repeated index. Pf is the
ressure in the fluid. � s and � are, respectively, the stress and strain
ensors of the isotropic elastic solid. The stress tensor is � � � s

�PfI of the fluid-filled solid matrix, and � � �� f � �1 � ���s

s the density of the saturated medium, where �s and � f are the solid
nd fluid densities, respectively, and �w � a� f /� with a represent-
ng the tortuosity. The shear modulus is �, and �s � � � �2M is the
amé coefficient in the solid matrix, where � is the Lamé coefficient
f the saturated matrix. The variable functions of the porosity and
ulk moduli of the fluid and solid components of the porous medium
re � and M, respectively. The viscous damping coefficient is K

	 /
 , where 	 is the permeability of the solid matrix and 
 is the
uid viscosity. All the variables involved in the calculations are giv-
n in Table 1.

The frequency-domain form of this equation is

��2��us � � fw� � � · �

��2�� fu
s � �ww� � � � Pf � i�Kw

Pf � ��M � · us � M � · w , �3�

here � denotes angular frequency and where, for simplicity, we
ave used the same notation for the different fields in the frequency
omain.

In the classical first-order velocity-stress formulation, equations 1
nd 2 are rewritten as

��w� � � f
2�� tv

s � �w � · � � � f � Pf � �Kv f

��w� � � f
2�� tv

f � �� f � · � � � � Pf � � fKv f

� t� � C: � vs � �� tP
fI

� tP
f � ��M � · vs � M � · v f , �4�

here vs � �vi
s�i�1,D and v f � � tw � �vi

f�i�1,D are the solid and fil-
ration velocity vectors, respectively. As in Zeng and Liu �2001b�,
e introduce an auxiliary variable � and the trace of the strain tensor
r��� � � and rewrite the system as
ii
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��w� � � f
2�� tvi

s � �w� j� ij � � f� iP
f � � fKvi

f

��w� � � f
2�� tvi

f � �� f� j� ij � �� iP
f � �Kvi

f

� t�ij �
1

2
�� jvi

s � � iv j
s�

� t� � �� ivi
f

Pf � ��M Tr��� � M�

� ij
s � �s� ij Tr��� � 2��ij

� ij � � ij
s � �Pf� ij . �5�

he frequency-domain form of this system of equations is then

i���w� � � f
2�vi

s � �w� j� ij � � f� iP
f � � fKvi

f

i���w� � � f
2�vi

f � �� f� j� ij � �� iP
f � �Kvi

f

i��ij �
1

2
�� jvi

s � � iv j
s�

i�� � �� ivi
f

Pf � ��M Tr��� � M�

� ij
s � �s� ij Tr��� � 2��ij

� ij � � ij
s � �Pf� ij . �6�

THE CLASSICAL PML FORMULATION
IN VELOCITY AND STRESS

The main idea behind the PML technique in 2D lies in reformulat-
ng the derivatives in directions x and y in the four layers surround-
ng the physical domain. In the rest of this article, indices i and j can
e replaced by values 1 and 2, which correspond to coordinates x and
, respectively.As in Komatitsch and Martin �2007�, a damping pro-
le dx�x� is defined in the PML region so that dx � 0 inside the main
omain and dx �0 in the PML, and a new complex coordinate x̃ is
xpressed as

x̃�x� � x �
i

�
�

0

x

dx�s�ds . �7�

In direction y, a similar damping profile dy�y� is defined, and a
ew complex coordinate ỹ is expressed as

ỹ�y� � y �
i

�
�

0

y

dy�s�ds . �8�

sing the fact that

� x̃ �
i�

i� � dx
� x �

1

sx
� x, �9�

ith

sx �
i� � dx

i�
� 1 �

dx

i�
, �10�

nd by retrieving similar expressions of � and s , all x derivatives �
ỹ y x
re replaced with x̃ derivatives � x̃, and y derivatives � y are replaced
ith ỹ derivatives � ỹ.
By using the mapping of equation 9, equation 6 is rewritten in

erms of x rather than x̃ and y rather than ỹ and then becomes the fol-
owing �with indices i and j taking the possible values x and y�:

i���w� � � f
2�vi

s � �w
1

si
� i� ii � �w

1

sj
� j� ij � � f

1

si
� iP

f

� � fKvi
f, j � i

i���w� � � f
2�vi

f � �� f
1

si
� i� ii � � f

1

sj
� j� ij � �

1

si
� iP

f

� �Kvi
f, j � i

i��ij �
1

2
� 1

sj
� jvi

s �
1

si
� iv j

s�
i�� � �

1

s1
� 1v1

f �
1

s2
� 2v2

f

Pf � ��M Tr��� � M�

� ij
s � �s� ij Tr��� � 2��ij

� ij � � ij
s � �Pf� ij . �11�

The velocity and strain fields subsequently are split into two com-
onents �Zeng and Liu, 2001b�, and the result is

���w� � � f
2�v1

sk � �w
1

sk
� k� 1k � � f

� 1k

sk
� kP

f

� � 2k� fKv1
f , k � 1,2

���w� � � f
2�v2

sk � �w
1

sk
� k� k2

� � 2k�� f
1

sk
� kP

f � � fKvk
f�,

k � 1,2

���w� � � f
2�v1

fk � �� f
1

sk
� k� 1k � �

� 1k

sk
� kP

f

� � 2k�Kv1
f , k � 1,2

���w� � � f
2�v2

fk � �� f
1

sk
� k� k2

� � 2k��
1

sk
� kP

f � �Kvk
f�, k � 1,2

i��12
k �

1

2
�� 1k

s1
� 1v2

s �
� 2k

s2
� 2v1

s�, k � 1,2

i��ii �
1

si
� ivi

s

i�� k � �
1

s
� kvk

f , k � 1,2

k
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vi
s � vi

s1 � vi
s2

vi
f � vi

f1 � vi
f2

�12 � �12
1 � �12

2

� � � 1 � � 2,

Pf � ��M Tr��� � M�

� ij
s � �s� ij Tr��� � 2��ij

� ij � � ij
s � �Pf� ij . �12�

Using an inverse Fourier transform, we return to the time domain
nd obtain the final classical PML formulation of the poroelastic
quations in a split form:

� t � dk���w� � � f
2�v1

sk

� �w� k� 1k � � 1k� f� kP
f � � 2k� fK

��v1
f � dk�

��

t

v1
f d� �, k � 1,2

� t � dk���w� � � f
2�v2

sk

� �w� k� k2 � � 2k

��� f� kP
f � � fK�v2

f � dk�
��

t

v2
f d� ��, k � 1,2

�� t � dk���w� � � f
2�v1

fk

� �� f� k� 1k � � 1k�� kP
f � � 2k�K

��v1
f � dk�

��

t

v1
f d� �, k � 1,2

� t � dk���w� � � f
2�v2

fk

� �� f� k� k2 � � 2k

���� kP
f � �K�v2

f � dk�
��

t

v2
f d� ��, k � 1,2

� t � dk��12
k �

1

2
�� 1k� 1v2

s � � 2k� 2v1
s�, k � 1,2

�� t � di��ii � � ivi
s

�� t � dk�� k � �� kvk
f , k � 1,2

vi
s � vi

s1 � vi
s2

vi
f � vi

f1 � vi
f2

�12 � �12
1 � �12

2

� � � 1 � � 2,

Pf � ��M Tr��� � M�
� ij
s � �s� ij Tr��� � 2��ij

� ij � � ij
s � �Pf� ij . �13�

The dissipative integral term that appears on the right-hand side of
he equations is computed by introducing an auxiliary memory vari-
ble defined as

B�x,y,t� ��
��

t

v fd� , �14�

hich adds another equation to system 13 �Zeng and Liu, 2001b�:

� tB�x,y,t� � v f . �15�

Unfortunately, as we show in the section about numerical tests be-
ow, this classical PMLformulation does not give satisfactory results
t grazing incidence. Therefore, we introduce an unsplit CPMLtech-
ique improved at grazing incidence for poroelastic media.

A CPML TECHNIQUE IMPROVED
AT GRAZING INCIDENCE FOR THE
BIOT POROELASTIC EQUATIONS

In this section, the CPML technique developed in the purely elas-
ic case in Komatitsch and Martin �2007� is used for the first-order
ormulation of the poroelastic wave equation. The key idea of the
PML �Roden and Gedney, 2000� lies in finding a more general
hoice for sx than that of equation 9 by introducing a real variable
x �0 so that

sx � 1 �
dx

�x � i�
. �16�

Using some simple algebraic operations and making use of the re-
ursive convolution method of Luebbers and Hunsberger �1992�, we
emonstrated in Komatitsch and Martin �2007� that this generalized
hoice can be implemented in practice by introducing a memory
ariable � x updated at each time step according to

� x
n � bx� x

n�1 � ax�� x�n�1/2, �17�

here:

bx � e��dx��x��t and ax �
dx

dx � �x
�bx � 1� ,

�18�

nd that then, in the elastic case, the unsplit CPML formulation can
e implemented easily in a finite-difference code without PML by
imply replacing the spatial derivatives � x with � x � � x and advanc-
ng � x in time using the same time-evolution scheme as for the other
existing� variables.

This same idea can be used to define a CPML formulation for the
oroelastic wave equation by introducing such a memory variable
or each spatial derivative that appears in equation 5. In terms of nu-
erical efficiency, the memory storage needed to implement CPML

or poroelastic equations is similar to the second-order velocity-
tress formulation of Zeng and Liu �2001b�, as can be seen in
able 2. Furthermore, the classical PML requires an extra memory
ariable to handle the dissipative term that is not present in the
PML formulation, the CPML being essentially based on the com-
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lex change of variable for first-derivative calculations indepen-
ently of the presence or absence of dissipative terms.

Aconvenient property shared by the classical PMLand the CPML
s that the same method can be used to define a PML along the y-axis
nd that in the corners, the different memory variables simply are
ummed �i.e., the corners are handled automatically by the formula-
ion�.

NUMERICAL TESTS

To validate the new CPML model, we use a spatial discretization
f the equations based on a classical staggered-grid fourth order in
pace and second order in time, similar to that used, for example, by
evander �1988�, Graves �1996�, and Moczo et al. �2000� in the elas-

ic case and by Pride et al. �2004� and Masson et al. �2006� in the Biot
oroelastic case. We use a fourth-order discretization scheme in
pace to increase accuracy and to enable us to use grids of reasonable
ize for sources of relatively high-frequency content, and we use a
econd-order leapfrog scheme for the integration in time �e.g.,
irieux, 1986�. The eight variables vx, vy, � xx, � yy, � xy, vx

f , vy
f , and Pf,

s well as the memory variables that implement the recursive convo-
ution, are discretized on the grid represented in Figure 1.

ondissipative heterogeneous media

To study the behavior of the CPML in a heterogeneous nondissi-
ative medium in the case of waves propagating at grazing inci-
ence, we consider a first experiment in which we simulate the prop-
gation of poroelastic waves in a heterogeneous medium 70 m
310 m in size, surrounded by four PML layers of 10 grid points

ach. The medium comprises two horizontal layers whose physical
roperties are the same as that described by Zeng and Liu �2001b�
nd shown in Table 1. The interface between the two layers is located
t y � 105 m. To discretize the equations in space, the spatial step
ust be selected according to the size of solid pores and grains. In-

eed, in a poroelastic model, fast pressure �P� and shear �S� waves
ainly resolve macroscopic geologic structures of a few tens or hun-

reds of meters throughout the seismic frequency range �typically
Hz through 100 Hz�, whereas slow P- and S-waves are related to

he microscopic scale.
The system of differential equations derives from homogeniza-

ion considerations, and the wavelengths must be larger than a typi-
al averaging elementary volume, which in turn must be at least 10

able 2. The maximum number of arrays needed in the
ML layers to implement the method in two dimensions.a

No PML
PML

without total
PML

with total CPML

D 8 16 24 19
a“PML without total” is the classical PML technique �see, e.g.,

eng and Liu, 2001b� without storing the total field, i.e., the sum of
he split components, which then is recomputed in each loop. “PML
ith total” is the classical PML technique, storing the total field.

CPML” is the CPML technique. This maximum number is reached
n regions in which all the PML layers are present, i.e., in the corners
f the domain. The small difference in storage applies only in the
ML layers and not in the main domain and is therefore negligible.
or comparison, we also recall the number of arrays needed when no
bsorbing conditions are implemented in the finite-difference tech-
ique.
imes larger than the pore or grain sizes �Pride et al., 2004�. Numeri-
ally, this is very important and must be kept in mind because some
onphysical waves and unwanted numerical instabilities or numeri-
al dispersion can appear in the simulations. In the following, all
hese considerations are taken into account. The spatial discretiza-
ion step is the same in both directions and is equal to �x � �y

0.5 m, i.e., the grid �including the PML layers� has a total size of
41�621 grid points.
Masson et al. �2006� have analyzed the stability of the scheme and

ave shown that one must ensure the necessary but not sufficient sta-
ility condition ��w � � f

2 � 0. The general stability criterion is a
onlinear inf-sup condition, which is difficult to use in practice.
owever, for the typical values of the parameters used in our study,

he stability condition is similar to the classical Courant condition of
he elastic case. In particular, if �w/� f is large �here approximately
.96 in the bottom layer and 24.2 in the top layer�, the Courant num-
er of the discretized poroelastic system of equations can be extrapo-
ated from the elastic case in one, two, or three dimensions, and the
ime step �t must obey the Courant-Friedrichs-Lewy �Courant et al.,
928� stability condition

cp�t

�x
�

1

�c1 � c2��D
�19�

n the case of a uniform mesh in all spatial directions, where D is the
patial dimension of the problem, where c1 � 9/8 and c2 � 1/24 for
he fourth-order spatial discretization scheme used, and c1 � 1 and
2 � 0 for the second-order scheme.

It can be observed that the Courant condition for the fourth-order
cheme is slightly lower than that for the second-order scheme, by a
actor 6/7 � 0.857, but this is balanced by the fact that a larger spatial
tep and therefore a smaller number of grid points can be used, which
educes the total number of calculations and the amount of memory
torage. We select a time step �t � 0.1 ms, i.e., a ratio of 0.562 in
he stability condition 19, slightly below the upper limit of 1/�2

0.857�0.601. The simulation is performed for 100,000 time
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ξ
vsx v fx

vys vyf

fP

igure 1. Two-dimensional staggered spatial finite-difference grid
f Madariaga �1976� used classically to discretize the equations of
lastodynamics. In our study, the staggered grid is applied to the ve-
ocity-stress formulation of the Biot poroelastic wave equation, as in
eng and Liu �2001b� and Masson et al. �2006�. The positions of dis-
rete stresses, fluid pressure, strains, and velocity components in the
olid matrix and in the fluid are indicated.
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teps, i.e., for a total duration of 10 s. A pressure point source is lo-
ated close to the left PML layer at 10 grid points from its base �xs

55 m, ys � 150 m�. The source is the first derivative of a Gauss-
an in time, with a central frequency f0 � 40 Hz, shifted in time by
0 � 0.03 s so that it will have null initial conditions.

PML layers are implemented on the four edges of the grid. As
n Gedney �1998� and Collino and Tsogka �2001�, the damping
rofile in the PML is chosen as dx�x� � d0�x / L �N along the x-axis
nd dy�y� � d0� y / L �N along the y-axis, where L is the thick-
ess of the absorbing layer, N � 2, and d0 � � �N � 1�VP

max

og�Rc� / 2L �5827.86, VP
max being equal to the speed of the fast pres-

ure wave and Rc being the target theoretical reflection coefficient,
hosen here as 0.1%. As in Roden and Gedney �2000�, we make �x

nd �y vary linearly in the PML layer between a maximum value
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igure 2. Snapshots of the vy
s component of the 2D velocity vector in

he solid matrix for a nondissipative porous model corresponding to
thin slice with CPML conditions implemented on the four sides, at

ime 0.1 s �top�, 0.2 s, 0.4 s, 0.5 s, and 0.6 s �bottom�. This is shown
n red �positive� or blue �negative� when it has an amplitude higher
han a threshold of 1% of the maximum, and the normalized value is
aised to the power 0.3 to enhance small amplitudes that otherwise
ould not be clearly visible. The orange cross indicates the location
f the source and the green squares the position of receivers at which
eismograms represented in the left column of Figure 4 are recorded.
he four vertical or horizontal orange lines represent the edge of
ach PML layer. The interface between the two media is represented
y a black line. No spurious wave of significant amplitude is visible,
ven at grazing incidence. The snapshots have been rotated 90° left
o fit on the page.
max at the beginning of the PML and zero at the top. As in Festa and
ilotte �2005�, we then take �max � � f0, where f0 is the central fre-
uency of the source defined above.

On the external edges of the grid, i.e., at the top of each PML, we
mpose a Dirichlet condition on the velocity vector �v � 0 for all t�.
ecause of the aspect ratio of the grid, the waves reach the PML lay-
rs at grazing incidence in several areas of the mesh. The fast pres-
ure waves, the shear waves, and the slow pressure waves are ab-
orbed gradually in the PMLs. Snapshots of the simulation �Figure
� do not exhibit significant spurious oscillations in the case of the
PML condition, whereas nonphysical spurious oscillations arise in

he case of the classical PML �Figure 3�.
The vertical component of the velocity in the solid phase is

ecorded at two receivers located close to the edges of the grid, at
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igure 3. Snapshots of the vy
s component of the 2D velocity vector in

he solid matrix for a nondissipative porous model corresponding to
thin slice with classical PML conditions �Zeng and Liu, 2001b� im-
lemented on the four sides, at time 0.1 s �top�, 0.2 s, 0.4 s, 0.5 s,
nd 0.6 s �bottom�. This is shown in red �positive� or blue �negative�
hen it has an amplitude higher than a threshold of 1% of the maxi-
um, and the normalized value is raised to the power 0.3 to enhance

mall amplitudes that would otherwise not be clearly visible. The or-
nge cross indicates the location of the source and the green squares
he position of receivers at which seismograms represented in the
ight column of Figure 4 are recorded. The four vertical or horizontal
range lines represent the edge of each PML layer. The interface be-
ween the two media is represented by a black line. Compared with
igure 2, spurious waves appear at grazing incidence along the edg-
s of the model and send spurious energy back into the main domain.
he snapshots have been rotated 90° left to fit on the page.
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ntinuity� are not computed correctly.

that the discrete CPML is stable up to 100,000 steps.
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he bottom and top of the slice in the lower and
pper right corners, 10 grid points above the low-
r PML and 10 grid points below the upper PML
n �x1 � 55 m, y1 � 10 m� and �x2 � 55 m, y2

290 m� to analyze the effects of the boundary
onditions. In Figure 4, solutions with CPML and
ith the classical PMLfor the vertical component
f the velocity vector in the solid matrix are com-
ared with the analytical solution of Diaz and Ez-
iani �J. Diaz and A. Ezziani, personal communi-
ation, 2008� derived from the analytical solution
or a single layer �Dai et al., 1995; Ezziani, 2005,
006�. The residual error is small in the case of
PML, whereas the solution with the classical
ML is distorted significantly.
We now study the decay of energy in the mesh

o analyze more precisely the efficiency of the
PML at grazing incidence. Figure 5 shows the
ecay in time of the total energy E

E �
1

2
��vs�2 �

1

2 	
i�1

D

	
j�1

D

� ij
s �ij

�
1

2
�w�v f�2 �

1

2M
Pf2

� � fv
s · v f

�20�

n the inner part of the model �i.e., in the medium
ithout the four PML layers� for the simulation
resented in Figure 2. In Figure 5, we compare
he evolution of total energy over 10,000 steps
ith CPML to that calculated with the classical
ML. Between approximately 0 s and 0.1 s, the
ource injects energy into the system. Then the
nergy transported by the different P- and
-waves gradually is absorbed by the PML lay-
rs, and after approximately 0.6 s all converted
nd transmitted waves should have disappeared
nd no energy should remain in the medium. All
he remaining energy is therefore spurious.

At 0.65 s, a total energy of 7.03�10�4 J re-
ains in the case of PML, and a total energy of

.38�10�6 J remains in the case of CPML �i.e.,
maller by a factor of 208�. It is also interesting to
tudy the issue of the stability of the CPML for
onger time periods. It is known that in numerous
ML models �e.g., Maxwell’s equations�, weak
r strong instabilities can develop for long simu-
ations �e.g., Abarbanel et al., 2002; Bécache and
oly, 2002; Bécache et al., 2004�. To analyze
ong-time stability from a numerical point of
iew, we show in Figure 5 the evolution of total
nergy over 10 s �i.e., 100,000 time steps� for the
xperiments of Figures 2 and 3. It decreases con-
inuously, and no instabilities are observed on this
emilogarithmic curve, which means that the dis-
rete CPML is stable up to 100,000 steps.
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we make the e
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which means
t column�: Time evolution of the numerical solution with CPML �dotted
y
s component of the velocity vector in the solid matrix at the first receiver in
� 10 m� �top� and second receiver in �x � 55 m, y � 290 m� �bottom�
h the analytical solution of Diaz and Ezziani �J. Diaz and A. Ezziani, per-
ication, 2008; solid line� for the numerical experiment of Figure 2.At these
located close to the PML layer and far from the source �at both ends of the
oints away from the beginning of the PML layer�, the agreement is good in
azing incidence. This illustrates the good efficiency of the CPML. �Right
e comparison when the classical PML of Zeng and Liu �2001b� is used in
experiment of Figure 3. Large spurious oscillations appear, and the fast
wave are distorted significantly. The other waves �transmitted and convert-
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: Decay of total energy with time in the main domain �without the four PML
milogarithmic scale for the simulations presented in Figures 2 and 3. The
ed lines correspond, respectively, to the CPML and PML cases. Between
0 s and 0.1 s, energy is injected by the source in the medium. Then the en-

y the P- and S-waves is absorbed gradually in the PML layers. The slow
e different waves converted and transmitted at the model discontinuity are
rn, which results in a steep decay of total energy.After approximately 0.6 s,
o energy should remain in the medium because all waves have left the do-
all the remaining energy is spurious and constitutes a good test of the effi-
absorbing conditions. In the case of PML, at 0.65 s, a total energy around
remains, whereas a total energy of 3.38�10�6 J is present in the case of

factor of 208 smaller. Right: To study the stability of CPML at longer times,
xperiment of Figure 2 last for 100,000 time steps �i.e., 10 s�. Total energy
tinuously, and no instabilities are observed on this semilogarithmic curve,
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DISSIPATIVE
HETEROGENEOUS CASE

In the case of a dissipative heterogeneous medium, we study the
ehavior of the CPML at grazing incidence for the same thin hetero-
eneous slice, but with a higher central frequency f0 � 80 Hz shift-
d in time by t0 � 0.015 s and with a nonzero viscous term K �given
n Table 1�. In the presence of dissipation, the slow waves are not
resent. Because the slow wave velocities given in Table 1 are small-
r than the S-wave velocity by a factor of almost two, we therefore
an reasonably use the same mesh size and grid spacing as in the
ondissipative case, although the frequency is twice as high.

We do not have an analytical solution in the dissipative case,
herefore we compare the CPML and the PML of Zeng and Liu
2001b� with a numerical reference solution obtained with the hy-
rid spectral high-order finite-element method �MFEMSPEC� of
zziani �2005�, used on a very large mesh to mimic an infinite do-
ain. In Figure 6, the CPML solution does not exhibit significant

purious oscillations. However, in Figure 7, in the case of the classi-
al PML, oscillations appear at grazing incidence, similar to the non-
issipative case above.
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igure 6. Snapshots of the vy
s component of the 2D velocity vector in

he dissipative case for a model corresponding to a thin slice with
PML conditions implemented on the four sides, at time 0.06 s

top�, 0.12 s, 0.18 s, and 0.24 s �bottom�. This is shown in red �posi-
ive� or blue �negative� when it has an amplitude higher than a
hreshold of 1% of the maximum, and the normalized value is raised
o the power 0.3 to enhance small amplitudes that otherwise would
ot be represented clearly. The central frequency has been increased
o 80 Hz, compared with the 40 Hz used in Figure 2 to reduce the
arge wavelengths caused by viscous smoothing. The orange cross
ndicates the location of the source and the green squares the position
f receivers at which seismograms represented in Figures 8 and 9 are
ecorded. The four vertical or horizontal orange lines represent the
dge of each PML layer. The interface between the two media is rep-
esented by a black line. In this case, waves are smoothed, and the
low waves are filtered by viscous damping. No spurious wave of
ignificant amplitude is visible, even at grazing incidence. The snap-
hots have been rotated 90° left to fit on the page.
To study more precisely the difference with the MFEMSPEC ref-
rence solution, in particular close to the boundary and at a long dis-
ance from the source, Figures 8 and 9 compare the vertical compo-
ent of the velocity vector in the solid matrix and the fluid pressure
omputed with CPML or with the classical PML to the reference so-
ution. Large discrepancies can be observed in the case of the classi-
al PML caused by the generation of growing oscillations inside and
long the PML, whereas much smaller discrepancies are present in
he case of CPML.

In the viscous dissipative case, the energy as expected is damped
uch faster than in the nondissipative case �Figure 10�. Viscous

amping and PML absorption seem to compete in a similar propor-
ion. Energy decays faster in the case of CPML than in the case of
ML and reaches 4.48�10�9 J at 2 s for CPML, whereas 1.15
10�7 J remains in the case of PML, i.e., a factor of 26 times larger.
gain, we observe that in the case of PML, total energy decreases

lower than with CPML after 0.25 s because of the generation of
purious oscillations in the PML layer, which develop along the lay-
r and send spurious energy back into the domain. All spurious
aves then are absorbed gradually by the upper and lower PML lay-
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igure 7. Snapshots of the vy
s component of the 2D velocity vector in

he dissipative case for a model corresponding to a thin slice with
lassical PML conditions of Zeng and Liu �2001b� implemented on
he four sides, at time 0.06 s �top�, 0.12 s, 0.18 s, and 0.24 s �bot-
om�. This is shown in red �positive� or blue �negative� when it has an
mplitude higher than a threshold of 1% of the maximum, and the
ormalized value is raised to the power 0.3 to enhance small ampli-
udes that otherwise would not be represented clearly. The central
requency has been increased to 80 Hz compared with the 40 Hz
sed in Figure 3 to reduce the large wavelengths caused by viscous
moothing. The orange cross indicates the location of the source and
he green squares the position of receivers at which seismograms
epresented in Figures 8 and 9 are recorded. The four vertical or hori-
ontal orange lines represent the edge of each PML layer. The inter-
ace between the two media is represented by a black line. In this
ase, waves are smoothed, and the slow waves are filtered by viscous
amping. Compared with Figure 6, spurious waves appear at graz-
ng incidence along the edges of the model and send spurious energy
ack into the main domain. The snapshots have been rotated 90° left
o fit on the page.
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Figure 8. Top: Seismograms of the vy
s component of

the velocity vector in the solid matrix at the first re-
ceiver in �x � 55 m, y � 10 m�, i.e., 10 grid points
away from the beginning of the absorbing layers in
the case of CPML �left, dotted line� and of the clas-
sical PML �right, dotted line� compared with a
reference solution �solid line� computed using
the high-order finite-element method of Ezziani
�2006� on a very large domain which mimics an in-
finite medium. The agreement obtained in the case
of CPML is good and no significant spurious waves
are recorded, whereas in the case of the classical
PML, large spurious oscillations are present. The
reference solution is numerical and therefore some
of the discrepancies could come from small numer-
ical dispersion in that reference solution. However,
that reference solution does not contain any artefact
coming back from the edges of the grid because it is
computed purposely on a very large grid that mim-
ics an infinite medium.
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Figure 9. Same figure as Figure 8 but for the fluid
pressure Pf. The conclusions regarding the im-
proved efficiency of CPML compared with PML
remain the same.
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rs, making the total energy decrease toward small values that none-
heless remain higher by several orders of magnitude than with
PML after a long time. Again, the CPML solution is stable for long

imes, up to a total duration of 10 s �i.e., 100,000 time steps�.

CONCLUSIONS

In a previous article, we improved the classical perfectly matched
ayer technique at grazing incidence for elastic media based on an
nsplit convolutional technique called CPML. Here, we applied the
PML to Biot poroelastic media at a cost that is similar in terms of
emory storage to that of the classical PML. To demonstrate its im-

roved behavior, we compared both CPML and classical PML im-
lemented in a fourth-order staggered finite-difference scheme in
pace in a thin slice to the analytical solution in the nondissipative
ase and to a hybrid spectral/finite-element method in the dissipative
ase. The study of the decay of total energy in the medium without
he PML layers confirmed that CPML is more efficient than PML at
razing incidence and showed that CPML remains stable for simula-
ions at long times.

The source code of our finite-difference program SEISMIC
CPML is freely available under CeCILL license �a French equiva-

ent of GNU GPL� from www.univ-pau.fr/˜dkomati1.
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