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An unsplit convolutional perfectly matched layer improved at grazing
incidence for seismic wave propagation in poroelastic media

Roland Martin', Dimitri Komatitsch'?, and Abdelaziz Ezziani®

ABSTRACT

The perfectly matched layer (PML) absorbing technique
has become popular in numerical modeling in elastic or po-
roelastic media because of its efficiency in absorbing waves
at nongrazing incidence. However, after numerical discreti-
zation, at grazing incidence, large spurious oscillations are
sent back from the PML into the main domain. The PML then
becomes less efficient when sources are located close to the
edge of the truncated physical domain under study, for thin
slices or for receivers located at a large offset. We develop a
PML improved at grazing incidence for the poroelastic wave
equation based on an unsplit convolutional formulation of the
equation as a first-order system in velocity and stress. We
show its efficiency for both nondissipative and dissipative
Biot porous models based on a fourth-order staggered finite-
difference method used in a thin mesh slice. The results ob-
tained are improved significantly compared with those ob-
tained with the classical PML.

INTRODUCTION

In Komatitsch and Martin (2007), we presented an improved ab-
sorbing boundary technique for the purely elastic wave equation
based on an unsplit convolutional perfectly matched layer (CPML)
and applied it to the seismic wave equation, written as a first-order
system in velocity and stress, discretized based on a second-order fi-
nite-difference technique in space and time. We showed that this
technique is more efficient than the classical perfectly matched layer
(PML) at absorbing waves impinging the edges of the model at graz-
ing incidence.

However, real geophysical media often exhibits more complex
rheologies, for instance, with mixtures of solids, gases, and liquids.
The analysis of elastic waves propagating in fluid-saturated porous
media might provide better insight for petrophysical imaging and
exploration of natural resources such as hydrocarbon and gas-hy-
drate reservoirs than single-phase theories represented mainly by
elastic or viscoelastic models. The effects of pore pressure, fluid vis-
cosity, porosity, permeability, and slip velocity between phases can
be taken into account, and these additional parameters allow the cou-
pling of the propagation of seismic waves and local diffusion of vis-
cous fluids. For instance, numerical modeling of plastic land mines
or composite materials consisting of granular solids and pore fluids
requires the use of poroelasticlike models (Zeng and Liu, 2001a) be-
cause two-phase models are more accurate than purely elastic or vis-
coelastic models in such a case. Hence, to more realistically model
the propagation of waves in heterogeneous media with attenuation
caused by fluids, we introduce a CPML for the first-order velocity-
stress formulation of the 2D poroelastic wave equation.

Depending on the wavelength at which porous media are studied,
different models can be used. The Biot (1956a, 1956b) and Hickey
(Hickey and Sabatier, 1997; Quiroga-Goode et al., 2005) models and
their variants most commonly are used, although the Hickey model
does not dramatically change the amplitude of the waves (Quiroga-
Goode etal., 2005). In addition to viscous fluid dissipation, the Hick-
ey model introduces thermomechanical coupling and involves po-
rosity and mass-density perturbations as the porous medium is sub-
mitted locally to pressure variations. In spite of all these improve-
ments, some authors consider that the Biot and Hickey theories lead
to similar waveforms (Quiroga-Goode et al., 2005). For this reason,
we focus on Biot equations in this article.

In terms of numerical simulation of wave propagation, as ex-
plained in Komatitsch and Martin (2007), the PML, first introduced
for Maxwell’s equations by Bérenger (1994), has been developed to
efficiently absorb outgoing waves reaching the artificial edges of the
computational domain. One of its most attractive properties is that it
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has a null reflection coefficient for all angles of incidence and all fre-
quencies before discretization by a numerical scheme. Unfortunate-
ly, after discretization, its numerical efficiency is reduced drastically
at grazing incidence.

Regarding the numerical simulation of wave propagation in gen-
eral heterogeneous poroelastic media, the finite-difference method
is probably the most widely used technique (e.g., Zhu and Mc-
Mechan, 1991; Dai et al., 1995; Jianfeng, 1999; Pride et al., 2004;
Masson et al., 2006; Sheen et al., 2006; Masson and Pride, 2007). To
introduce the classical PML in this method in the case of elastic me-
dia, the wave equation usually is formulated as a first-order system in
time based on velocity and stress (e.g., Collino and Tsogka, 2001). In
the context of poroelastic wave-propagation studies performed
based on finite differences, Zeng et al. (2001) applied a split-field
formulation of the PML to the Biot system of equations for the dis-
placement formulation, and Zeng and Liu (2001b) applied it to the
velocity-stress formulation. Ezziani (2005) developed a split ver-
sion of the PML applied to the Biot poroelastic equations, based on a
more accurate hybrid spectral high-order finite-element technique.

Here we strive to improve the PML for the Biot poroelastic model
at grazing incidence, based on an unsplit CPML formulation written
in velocity and stress, which also is advantageous in terms of memo-
ry storage, and implemented in a fourth-order finite-difference nu-
merical scheme.

Table 1. Physical properties of the heterogeneous two-layer
model under study.

Units Lower Upper
Physical variables (1S) layer layer
Solid density p; kg/m? 2588 2250
Fluid density p; kg/m?3 952.4 1040
Matrix tortuosity a 2.49 2.42
Porosity ¢ 0.25 0.1
Bulk density kg/m? 2179.1 2129
p=op;+ (1= @)p,
Apparent density kg/m?3 9486 25168
pw = apsl ¢
@ 0.89 0.58
M Pa 7.71X10° 7.34%10°
Damping viscous Ns/m* 338X 10° 3.33X10°
term K
Fast pressure-wave m/s 2817.33 1921
velocity in the solid
fo
Slow pressure-wave m/s 740 452.73
velocity in the solid

Ps

Shear-wave velocity m/s 1587.4 1072.6
in the solid Vg
Shear modulus u m/s 5.25%10° 2.4%10°
Lamé coefficient Pa 6.2X 108 6.0Xx 108
in solid matrix A,
Lamé coefficient in Pa 6.7271 X 10° 3.069 X 10°
saturated medium
A=A + Ma?

THE POROELASTIC WAVE EQUATION: BIOT
MODEL AND VELOCITY-STRESS FORMULATION

The differential, or “strong,” form of the poroelastic wave equa-
tion can be written as (e.g., Carcione, 2007)

V- (C:Vu' — aP))
pfﬁlzuS + pwo",zw = —-VP —Kow
Pl=—-aMV -w*—MV -w, (1)

paiu’ + pfa,zw

where W' = (u});—,» (D denotes the space dimension); w = ¢(u’
— ) and W = (&), are, respectively, the solid, relative, and
fluid displacement vectors; ¢ is the porosity; and C is the stiffness
tensor of the isotropic elastic solid matrix, defined as

O'fj = (C:s)ij = )\Sﬁijskk + ZMSU

1{ou} ou’
&ijj = _<_l + _l), (2
2 ﬁ.xj (9xl'

where indices i and j can be 1 or 2 here in 2D and with the Einstein
convention of implicit summation over a repeated index. P/ is the
pressure in the fluid. o° and € are, respectively, the stress and strain
tensors of the isotropic elastic solid. The stress tensor is o = ¢*
— aP'T of the fluid-filled solid matrix, and p = ¢p, + (1 — @)p,
is the density of the saturated medium, where p; and p; are the solid
and fluid densities, respectively, and p,, = ap,/¢ with a represent-
ing the tortuosity. The shear modulus is u, and A, = A — a>M is the
Lamé coefficient in the solid matrix, where A is the Lamé coefficient
of the saturated matrix. The variable functions of the porosity and
bulk moduli of the fluid and solid components of the porous medium
are a and M, respectively. The viscous damping coefficient is K
= k/m, where « is the permeability of the solid matrix and # is the
fluid viscosity. All the variables involved in the calculations are giv-
eninTable 1.
The frequency-domain form of this equation is

—w’(pu’ + pw) =V .o
—w2(pfu5 + pw) = — VP — ivKw
Pl=—aMV  -w*—MV -w, (3)
where w denotes angular frequency and where, for simplicity, we
have used the same notation for the different fields in the frequency
domain.

In the classical first-order velocity-stress formulation, equations 1
and 2 are rewritten as

(pyp — pj%)&,v’ =p,V -0+ pV P + pKv/
(pwp — PPN = —p;V -0 — pV P — pKv/
do=C: VvV — ad,P1
P = —aMV -v* — MV -V, 4)
where v* = (v);1pand v/ = d,w = (v]);_,p are the solid and fil-
tration velocity vectors, respectively. As in Zeng and Liu (2001b),

we introduce an auxiliary variable & and the trace of the strain tensor
Tr(e) = &, and rewrite the system as
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(pup — PPIW] = pud;oy; + pdi P + pKvl

(pyp — p?)(?tv{ = —psd;o; — pdPl — pKv/

1
07,8,»1- = 5((%0[3 + &ivj)

Pl = —aM Tr(e) + M¢

q
|

i = A0 Tr(e) + 2uey;

o= O'fj — anﬁ,-j. (5)

The frequency-domain form of this system of equations is then
io(p,p — pjzc)vf = p,djo; + pd P’ + prv{

iw(p,p — PJ%)U{ = —pdjo; — pdP’ — PKU{

1
i(l)sij = E(&jvf + alU;)

iwé = —(?,-U{
Pl = —aM Tr(e) + Mé
o = A Tr(e) + 2uey;
o =05 = ané‘,-j. (6)

THE CLASSICAL PML FORMULATION
IN VELOCITY AND STRESS

The main idea behind the PML technique in 2D lies in reformulat-
ing the derivatives in directions x and y in the four layers surround-
ing the physical domain. In the rest of this article, indices i and j can
be replaced by values 1 and 2, which correspond to coordinates x and
v, respectively. As in Komatitsch and Martin (2007), a damping pro-
file d,(x) is defined in the PML region so that d, = 0 inside the main
domain and d,>0 in the PML, and a new complex coordinate X is
expressed as

X(x) =x— if d,(s)ds. (7)
wJo

In direction y, a similar damping profile d,(y) is defined, and a
new complex coordinate y'is expressed as

- if’
yy) =y - —J d,(s)ds. (8)
wJo
Using the fact that
iw 1
= ﬁx = _a)m (9)
iw +d, Sy
with
iw + d, d,
s;=—"—=1+—, (10)
iw 1w

and by retrieving similar expressions of dyand s, all x derivatives d,

are replaced with X derivatives d, and y derivatives d, are replaced
with y derivatives d5.

By using the mapping of equation 9, equation 6 is rewritten in
terms of x rather than X and y rather than y and then becomes the fol-
lowing (with indices i and j taking the possible values x and y):

1 1 1 .
. 2 o
iw(p,p — ppv; = pw;aio'ii + pw;ajo-ij + pf;aipf
i j i

+ pkvl, j#i

. 1 1 1
iw(p,p — ppvl = _pf;&io'ii - Pf;&jo'ij - p;aipf
1

! J

— pKvl, j#i
) fr . 1
1w8ij = E s_a]l)l + s_alv]
J i
; J 1 S
iwé = —;&101 - S—zﬁzvz

Pl = —aM Tr(e) + ME

S
Il

The velocity and strain fields subsequently are split into two com-
ponents (Zeng and Liu, 2001b), and the result is

1 o
- 2 sk Ik
iw(p,p — ppvy = P ko1 + py S P
k k

+ 52kprU{7 k= 1,2

. I
i0(pup = PPVY = pu 002
k

T ool oy + pyko
2k Pfs k P& |,
k

k=12

iw(p,p — ppoi" = _Pfs_ﬁkfflk —p— P!
k

Sk

- 52kaU]1‘" k = 1,2

: 1
: 2
iw(p,p — pPvl = _Pfs_akﬂ'kz
k

1 :
- 52k(ps_(9kpf + pKU]f(), k= 1,2
k

1o .0 <

iwsl, = —(—lkﬁlvi + —2ké’zvﬁ), k=12
2 S1 S

ia)s,»,- = _ﬁivs

i
i

1
iwt = ——awl, k=12
Sk
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‘ 51 52
vi =v} + v}
)

v, = U{l + v;
€12 = 8{2 + 8%2
E=¢+ &,
Pl = —aM Tr(e) + Mé
oy = A6, Tr(e) + 2ue;;

_ s
g = G-l'j

Using an inverse Fourier transform, we return to the time domain
and obtain the final classical PML formulation of the poroelastic
equations in a split form:

(0, + d(p.p — pPv}
= pudiT i + SupdiP’ + SyupK

t
><<v{+ dkf u{d7>, k=12

(0, + d)(pup — ppv3
= P00 T O

t
X(pf&ka + pr(vé + dkj v’édr)), k=1,2

(@, + d)(pyp — pPolt

= —ppdi0i — 51ka7ka — OypK

t
><<v-{' + ko v-{dr>, k=12

(@, + d)(pup — pPVY

= —pdTi — Oy
t
X(paka + pK(v*é + ko v-édr)), k=12
k 1 K K
((9, + dk)slz = 5(51]((911)2 + 52](&201)’ k = 1,2

(0, + d)e;; =

|
D
<

(0, + d)&F = —awl, k=1,2

<
|
<
<R
_J’_
<

— ofl + of?

1 2
€p =g T &p

E=¢+ 8%
Pl = —aM Tr(e) + Mé

q
|

5= )\Y5l] Tr(s) + 2M8ij

S
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The dissipative integral term that appears on the right-hand side of
the equations is computed by introducing an auxiliary memory vari-
able defined as

t
B(x,y,?) =f vidr, (14)

which adds another equation to system 13 (Zeng and Liu, 2001b):
dB(x,y,1) = V. (15)

Unfortunately, as we show in the section about numerical tests be-
low, this classical PML formulation does not give satisfactory results
at grazing incidence. Therefore, we introduce an unsplit CPML tech-
nique improved at grazing incidence for poroelastic media.

A CPML TECHNIQUE IMPROVED
AT GRAZING INCIDENCE FOR THE
BIOT POROELASTIC EQUATIONS

In this section, the CPML technique developed in the purely elas-
tic case in Komatitsch and Martin (2007) is used for the first-order
formulation of the poroelastic wave equation. The key idea of the
CPML (Roden and Gedney, 2000) lies in finding a more general
choice for s, than that of equation 9 by introducing a real variable
a,=0so that

s,=1+ L . (16)
a, + 1w
Using some simple algebraic operations and making use of the re-
cursive convolution method of Luebbers and Hunsberger (1992), we
demonstrated in Komatitsch and Martin (2007) that this generalized
choice can be implemented in practice by introducing a memory
variable ¢/, updated at each time step according to

W= b+ a(0) 1 (17)

where:

d
b, =e WHadd and g = ——(b, — 1),
d, + a,

(18)

and that then, in the elastic case, the unsplit CPML formulation can
be implemented easily in a finite-difference code without PML by
simply replacing the spatial derivatives d, with d, + ¢, and advanc-
ing ¢ in time using the same time-evolution scheme as for the other
(existing) variables.

This same idea can be used to define a CPML formulation for the
poroelastic wave equation by introducing such a memory variable
for each spatial derivative that appears in equation 5. In terms of nu-
merical efficiency, the memory storage needed to implement CPML
for poroelastic equations is similar to the second-order velocity-
stress formulation of Zeng and Liu (2001b), as can be seen in
Table 2. Furthermore, the classical PML requires an extra memory
variable to handle the dissipative term that is not present in the
CPML formulation, the CPML being essentially based on the com-
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plex change of variable for first-derivative calculations indepen-
dently of the presence or absence of dissipative terms.

A convenient property shared by the classical PML and the CPML
is that the same method can be used to define a PML along the y-axis
and that in the corners, the different memory variables simply are
summed (i.e., the corners are handled automatically by the formula-
tion).

NUMERICAL TESTS

To validate the new CPML model, we use a spatial discretization
of the equations based on a classical staggered-grid fourth order in
space and second order in time, similar to that used, for example, by
Levander (1988), Graves (1996), and Moczo et al. (2000) in the elas-
tic case and by Pride etal. (2004) and Masson et al. (2006) in the Biot
poroelastic case. We use a fourth-order discretization scheme in
space to increase accuracy and to enable us to use grids of reasonable
size for sources of relatively high-frequency content, and we use a
second-order leapfrog scheme for the integration in time (e.g.,
Virieux, 1986). The eight variables v, vy, 0y, Oy, Oy, U}, v/, and P/,
as well as the memory variables that implement the recursive convo-
lution, are discretized on the grid represented in Figure 1.

Nondissipative heterogeneous media

To study the behavior of the CPML in a heterogeneous nondissi-
pative medium in the case of waves propagating at grazing inci-
dence, we consider a first experiment in which we simulate the prop-
agation of poroelastic waves in a heterogeneous medium 70 m
X310 m in size, surrounded by four PML layers of 10 grid points
each. The medium comprises two horizontal layers whose physical
properties are the same as that described by Zeng and Liu (2001b)
and shown in Table 1. The interface between the two layers is located
at y = 105 m. To discretize the equations in space, the spatial step
must be selected according to the size of solid pores and grains. In-
deed, in a poroelastic model, fast pressure (P) and shear (S) waves
mainly resolve macroscopic geologic structures of a few tens or hun-
dreds of meters throughout the seismic frequency range (typically
1 Hz through 100 Hz), whereas slow P- and S-waves are related to
the microscopic scale.

The system of differential equations derives from homogeniza-
tion considerations, and the wavelengths must be larger than a typi-
cal averaging elementary volume, which in turn must be at least 10

Table 2. The maximum number of arrays needed in the
PML layers to implement the method in two dimensions.”

PML PML
No PML without total with total CPML
2D 8 16 24 19

3PML without total” is the classical PML technique (see, e.g.,
Zeng and Liu, 2001b) without storing the total field, i.e., the sum of
the split components, which then is recomputed in each loop. “PML
with total” is the classical PML technique, storing the total field.
“CPML” is the CPML technique. This maximum number is reached
inregions in which all the PML layers are present, i.e., in the corners
of the domain. The small difference in storage applies only in the
PML layers and not in the main domain and is therefore negligible.
For comparison, we also recall the number of arrays needed when no
absorbing conditions are implemented in the finite-difference tech-
nique.

times larger than the pore or grain sizes (Pride et al., 2004). Numeri-
cally, this is very important and must be kept in mind because some
nonphysical waves and unwanted numerical instabilities or numeri-
cal dispersion can appear in the simulations. In the following, all
these considerations are taken into account. The spatial discretiza-
tion step is the same in both directions and is equal to Ax = Ay
= 0.5 m, i.e., the grid (including the PML layers) has a total size of
141 X 621 grid points.

Masson et al. (2006) have analyzed the stability of the scheme and
have shown that one must ensure the necessary but not sufficient sta-
bility condition pp,, — p} > (. The general stability criterion is a
nonlinear inf-sup condition, which is difficult to use in practice.
However, for the typical values of the parameters used in our study,
the stability condition is similar to the classical Courant condition of
the elastic case. In particular, if p,,/p; is large (here approximately
9.96 in the bottom layer and 24.2 in the top layer), the Courant num-
ber of the discretized poroelastic system of equations can be extrapo-
lated from the elastic case in one, two, or three dimensions, and the
time step Az must obey the Courant-Friedrichs-Lewy (Courant et al.,
1928) stability condition

c,At _ 1
Ax  (cp + Cz)\/B

(19)

in the case of a uniform mesh in all spatial directions, where D is the
spatial dimension of the problem, where ¢, = 9/8 and ¢, = 1/24 for
the fourth-order spatial discretization scheme used, and ¢; = 1 and
¢, = 0 forthe second-order scheme.

It can be observed that the Courant condition for the fourth-order
scheme is slightly lower than that for the second-order scheme, by a
factor 6/7 = 0.857, but this is balanced by the fact that a larger spatial
step and therefore a smaller number of grid points can be used, which
reduces the total number of calculations and the amount of memory
storage. We select a time step A7 = 0.1 ms, i.e., a ratio of 0.562 in
the stability condition 19, slightly below the upper limit of 1/ 2
X 0.857=0.601. The simulation is performed for 100,000 time

YA
s o f
€4y Oy --------- Vy vy
|
|
|
|
|
|
! — > X
vy V];C Oy Oyy P/
exx EYY %

Figure 1. Two-dimensional staggered spatial finite-difference grid
of Madariaga (1976) used classically to discretize the equations of
elastodynamics. In our study, the staggered grid is applied to the ve-
locity-stress formulation of the Biot poroelastic wave equation, as in
Zeng and Liu (2001b) and Masson et al. (2006). The positions of dis-
crete stresses, fluid pressure, strains, and velocity components in the
solid matrix and in the fluid are indicated.
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steps, i.e., for a total duration of 10 s. A pressure point source is lo-
cated close to the left PML layer at 10 grid points from its base (x;
= 55 m, y, = 150 m). The source is the first derivative of a Gauss-
ian in time, with a central frequency f, = 40 Hz, shifted in time by
to = 0.03 s so that it will have null initial conditions.

PML layers are implemented on the four edges of the grid. As
in Gedney (1998) and Collino and Tsogka (2001), the damping
profile in the PML is chosen as d.(x) = do(x/ L)N along the x-axis
and d,(y) = do(y/L)" along the y-axis, where L is the thick-
ness of the absorbing layer, N =2, and dy = — (N + 1)Vp™
log(R,) /2L =5827.86, V3™ being equal to the speed of the fast pres-
sure wave and R, being the target theoretical reflection coefficient,
chosen here as 0.1%. As in Roden and Gedney (2000), we make «,
and a, vary linearly in the PML layer between a maximum value
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Figure 2. Snapshots of the v component of the 2D velocity vector in
the solid matrix for a nondissipative porous model corresponding to
a thin slice with CPML conditions implemented on the four sides, at
time 0.1 s (top), 0.2 s,0.4 5,0.5 s,and 0.6 s (bottom). This is shown
in red (positive) or blue (negative) when it has an amplitude higher
than a threshold of 1% of the maximum, and the normalized value is
raised to the power 0.3 to enhance small amplitudes that otherwise
would not be clearly visible. The orange cross indicates the location
of the source and the green squares the position of receivers at which
seismograms represented in the left column of Figure 4 are recorded.
The four vertical or horizontal orange lines represent the edge of
each PML layer. The interface between the two media is represented
by a black line. No spurious wave of significant amplitude is visible,
even at grazing incidence. The snapshots have been rotated 90° left
to fit on the page.

nax at the beginning of the PML and zero at the top. As in Festa and
Vilotte (2005), we then take a,.« = 7f,, where f is the central fre-
quency of the source defined above.

On the external edges of the grid, i.e., at the top of each PML, we
impose a Dirichlet condition on the velocity vector (v = 0 for all 7).
Because of the aspect ratio of the grid, the waves reach the PML lay-
ers at grazing incidence in several areas of the mesh. The fast pres-
sure waves, the shear waves, and the slow pressure waves are ab-
sorbed gradually in the PMLs. Snapshots of the simulation (Figure
2) do not exhibit significant spurious oscillations in the case of the
CPML condition, whereas nonphysical spurious oscillations arise in
the case of the classical PML (Figure 3).

The vertical component of the velocity in the solid phase is
recorded at two receivers located close to the edges of the grid, at
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Figure 3. Snapshots of the v} component of the 2D velocity vector in
the solid matrix for a nondissipative porous model corresponding to
a thin slice with classical PML conditions (Zeng and Liu, 2001b) im-
plemented on the four sides, at time 0.1 s (top), 0.2's, 0.4 s, 0.5 s,
and 0.6 s (bottom). This is shown in red (positive) or blue (negative)
when it has an amplitude higher than a threshold of 1% of the maxi-
mum, and the normalized value is raised to the power 0.3 to enhance
small amplitudes that would otherwise not be clearly visible. The or-
ange cross indicates the location of the source and the green squares
the position of receivers at which seismograms represented in the
right column of Figure 4 are recorded. The four vertical or horizontal
orange lines represent the edge of each PML layer. The interface be-
tween the two media is represented by a black line. Compared with
Figure 2, spurious waves appear at grazing incidence along the edg-
es of the model and send spurious energy back into the main domain.
The snapshots have been rotated 90° left to fit on the page.
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the bottom and top of the slice in the lower and
upper right corners, 10 grid points above the low-
er PML and 10 grid points below the upper PML
in (x; =55m,y, =10m) and (x, = 55 m, y,
= 290 m) to analyze the effects of the boundary
conditions. In Figure 4, solutions with CPML and
with the classical PML for the vertical component
of the velocity vector in the solid matrix are com-
pared with the analytical solution of Diaz and Ez-
ziani (J. Diaz and A. Ezziani, personal communi-
cation, 2008) derived from the analytical solution
for a single layer (Dai et al., 1995; Ezziani, 2005,
2006). The residual error is small in the case of
CPML, whereas the solution with the classical
PML is distorted significantly.

We now study the decay of energy in the mesh
to analyze more precisely the efficiency of the
CPML at grazing incidence. Figure 5 shows the
decay in time of the total energy £

1 1 D D
E=—plvIP+-2 X gt
2 27502

1 1 » s
+opullVIP 4 P pyt eV

(20)

in the inner part of the model (i.e., in the medium
without the four PML layers) for the simulation
presented in Figure 2. In Figure 5, we compare
the evolution of total energy over 10,000 steps
with CPML to that calculated with the classical
PML. Between approximately O s and 0.1 s, the
source injects energy into the system. Then the
energy transported by the different P- and
S-waves gradually is absorbed by the PML lay-
ers, and after approximately 0.6 s all converted
and transmitted waves should have disappeared
and no energy should remain in the medium. All
the remaining energy is therefore spurious.

At 0.65 s, a total energy of 7.03X 107 J re-
mains in the case of PML, and a total energy of
3.38 X 10~¢ J remains in the case of CPML (i.e.,
smaller by a factor of 208). It is also interesting to
study the issue of the stability of the CPML for
longer time periods. It is known that in numerous
PML models (e.g., Maxwell’s equations), weak
or strong instabilities can develop for long simu-
lations (e.g., Abarbanel et al., 2002; Bécache and
Joly, 2002; Bécache et al., 2004). To analyze
long-time stability from a numerical point of
view, we show in Figure 5 the evolution of total
energy over 10 s (i.e., 100,000 time steps) for the
experiments of Figures 2 and 3. It decreases con-
tinuously, and no instabilities are observed on this
semilogarithmic curve, which means that the dis-
crete CPML s stable up to 100,000 steps.
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Figure 4. (Left column): Time evolution of the numerical solution with CPML (dotted
line) for the vy component of the velocity vector in the solid matrix at the first receiver in
(x =55m, y = 10 m) (top) and second receiver in (x = 55 m, y = 290 m) (bottom)
compared with the analytical solution of Diaz and Ezziani (J. Diaz and A. Ezziani, per-
sonal communication, 2008; solid line) for the numerical experiment of Figure 2. At these
two receivers located close to the PML layer and far from the source (at both ends of the
slice 10 grid points away from the beginning of the PML layer), the agreement is good in
spite of the grazing incidence. This illustrates the good efficiency of the CPML. (Right
column): Same comparison when the classical PML of Zeng and Liu (2001b) is used in
the numerical experiment of Figure 3. Large spurious oscillations appear, and the fast
P-wave and S-wave are distorted significantly. The other waves (transmitted and convert-
ed on the discontinuity) are not computed correctly.
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Figure 5. Left: Decay of total energy with time in the main domain (without the four PML
layers) on a semilogarithmic scale for the simulations presented in Figures 2 and 3. The
solid and dashed lines correspond, respectively, to the CPML and PML cases. Between
approximately O s and 0.1 s, energy is injected by the source in the medium. Then the en-
ergy carried by the P- and S-waves is absorbed gradually in the PML layers. The slow
P-wave and the different waves converted and transmitted at the model discontinuity are
absorbed in turn, which results in a steep decay of total energy. After approximately 0.6 s,
theoretically no energy should remain in the medium because all waves have left the do-
main. Hence, all the remaining energy is spurious and constitutes a good test of the effi-
ciency of the absorbing conditions. In the case of PML, at 0.65 s, a total energy around
7.03 X 107* J remains, whereas a total energy of 3.38 X 1076 J is present in the case of
CPML, i.e., afactor of 208 smaller. Right: To study the stability of CPML at longer times,
we make the experiment of Figure 2 last for 100,000 time steps (i.e., 10 s). Total energy
decreases continuously, and no instabilities are observed on this semilogarithmic curve,
which means that the discrete CPML is stable up to 100,000 steps.
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DISSIPATIVE
HETEROGENEOUS CASE

In the case of a dissipative heterogeneous medium, we study the
behavior of the CPML at grazing incidence for the same thin hetero-
geneous slice, but with a higher central frequency f, = 80 Hz shift-
edintimeby#, = 0.015 s and with a nonzero viscous term K (given
in Table 1). In the presence of dissipation, the slow waves are not
present. Because the slow wave velocities given in Table 1 are small-
er than the S-wave velocity by a factor of almost two, we therefore
can reasonably use the same mesh size and grid spacing as in the
nondissipative case, although the frequency is twice as high.

We do not have an analytical solution in the dissipative case,
therefore we compare the CPML and the PML of Zeng and Liu
(2001b) with a numerical reference solution obtained with the hy-
brid spectral high-order finite-element method (MFEMSPEC) of
Ezziani (2005), used on a very large mesh to mimic an infinite do-
main. In Figure 6, the CPML solution does not exhibit significant
spurious oscillations. However, in Figure 7, in the case of the classi-
cal PML, oscillations appear at grazing incidence, similar to the non-
dissipative case above.
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Figure 6. Snapshots of the v}, component of the 2D velocity vector in
the dissipative case for a model corresponding to a thin slice with
CPML conditions implemented on the four sides, at time 0.06 s
(top), 0.12 5,0.18 s, and 0.24 s (bottom). This is shown in red (posi-
tive) or blue (negative) when it has an amplitude higher than a
threshold of 1% of the maximum, and the normalized value is raised
to the power 0.3 to enhance small amplitudes that otherwise would
not be represented clearly. The central frequency has been increased
to 80 Hz, compared with the 40 Hz used in Figure 2 to reduce the
large wavelengths caused by viscous smoothing. The orange cross
indicates the location of the source and the green squares the position
of receivers at which seismograms represented in Figures 8 and 9 are
recorded. The four vertical or horizontal orange lines represent the
edge of each PML layer. The interface between the two media is rep-
resented by a black line. In this case, waves are smoothed, and the
slow waves are filtered by viscous damping. No spurious wave of
significant amplitude is visible, even at grazing incidence. The snap-
shots have been rotated 90° left to fit on the page.

To study more precisely the difference with the MFEMSPEC ref-
erence solution, in particular close to the boundary and at a long dis-
tance from the source, Figures 8 and 9 compare the vertical compo-
nent of the velocity vector in the solid matrix and the fluid pressure
computed with CPML or with the classical PML to the reference so-
lution. Large discrepancies can be observed in the case of the classi-
cal PML caused by the generation of growing oscillations inside and
along the PML, whereas much smaller discrepancies are present in
the case of CPML.

In the viscous dissipative case, the energy as expected is damped
much faster than in the nondissipative case (Figure 10). Viscous
damping and PML absorption seem to compete in a similar propor-
tion. Energy decays faster in the case of CPML than in the case of
PML and reaches 4.48 X107°J at 2 s for CPML, whereas 1.15
X 107 J remains in the case of PML, i.e., a factor of 26 times larger.
Again, we observe that in the case of PML, total energy decreases
slower than with CPML after 0.25 s because of the generation of
spurious oscillations in the PML layer, which develop along the lay-
er and send spurious energy back into the domain. All spurious
waves then are absorbed gradually by the upper and lower PML lay-
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Figure 7. Snapshots of the v} component of the 2D velocity vector in
the dissipative case for a model corresponding to a thin slice with
classical PML conditions of Zeng and Liu (2001b) implemented on
the four sides, at time 0.06 s (top), 0.12 s, 0.18 s, and 0.24 s (bot-
tom). This is shown in red (positive) or blue (negative) when it has an
amplitude higher than a threshold of 1% of the maximum, and the
normalized value is raised to the power 0.3 to enhance small ampli-
tudes that otherwise would not be represented clearly. The central
frequency has been increased to 80 Hz compared with the 40 Hz
used in Figure 3 to reduce the large wavelengths caused by viscous
smoothing. The orange cross indicates the location of the source and
the green squares the position of receivers at which seismograms
represented in Figures 8 and 9 are recorded. The four vertical or hori-
zontal orange lines represent the edge of each PML layer. The inter-
face between the two media is represented by a black line. In this
case, waves are smoothed, and the slow waves are filtered by viscous
damping. Compared with Figure 6, spurious waves appear at graz-
ing incidence along the edges of the model and send spurious energy
back into the main domain. The snapshots have been rotated 90° left
to fit on the page.
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Figure 8. Top: Seismograms of the v}, component of
the velocity vector in the solid matrix at the first re-
ceiverin (x = 55m,y = 10 m), i.e., 10 grid points
away from the beginning of the absorbing layers in
the case of CPML (left, dotted line) and of the clas-
sical PML (right, dotted line) compared with a
reference solution (solid line) computed using
the high-order finite-element method of Ezziani
(2006) on a very large domain which mimics an in-
finite medium. The agreement obtained in the case
of CPML is good and no significant spurious waves
are recorded, whereas in the case of the classical
PML, large spurious oscillations are present. The
reference solution is numerical and therefore some
of the discrepancies could come from small numer-
ical dispersion in that reference solution. However,
that reference solution does not contain any artefact
coming back from the edges of the grid because it is
computed purposely on a very large grid that mim-
ics an infinite medium.

Figure 9. Same figure as Figure 8 but for the fluid
pressure P/. The conclusions regarding the im-
proved efficiency of CPML compared with PML
remain the same.
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Figure 10. Left: Decay of total energy with time in the main domain (without the four
PML layers) on a semilogarithmic scale for the simulations presented in Figures 6 and 7.
Between approximately O s and 0.1 s, energy is injected by the source in the medium.
Then the energy carried by the P- and S-waves is absorbed gradually in the PML layers.
The different waves converted and transmitted at the model discontinuity are then ab-
sorbed, which results in a steep decay of total energy. After approximately 0.3 s, theoreti-
cally no energy should remain in the medium because all waves have left the domain, and
all the remaining energy is therefore spurious. This constitutes a good test of the efficien-
cy of the absorbing conditions. One can observe that energy in the case of the classical
PML decreases slower than in the case of CPML because of spurious energy sent back in
the main domain at grazing incidence. At 2 s, a total energy of 1.15X 10~7 J remains in
the case of PML, whereas a total energy of 4.48 X 10~° J remains in the case of CPML,
i.e., afactor of 26 smaller. Right: To study the stability of CPML at longer times in the dis-
sipative case, we make the experiment of Figures 6 and 7 last for 100,000 time steps (i.e.,
10 s) instead of 10,000. Total energy decreases continuously, and no instabilities are ob-
served on this semilogarithmic curve, which means that the discrete CPML is stable up to
100,000 steps. One can notice tiny oscillations because total energy is so small that we
start to see the effect of roundoff of floating-point numbers of the computer.
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