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ABSTRACT

The perfectly matched layer �PML� absorbing boundary
condition has proven to be very efficient from a numerical
point of view for the elastic wave equation to absorb both
body waves with nongrazing incidence and surface waves.
However, at grazing incidence the classical discrete PML
method suffers from large spurious reflections that make it
less efficient for instance in the case of very thin mesh slices,
in the case of sources located close to the edge of the mesh,
and/or in the case of receivers located at very large offset. We
demonstrate how to improve the PML at grazing incidence
for the differential seismic wave equation based on an unsplit
convolution technique. The improved PML has a cost that is
similar in terms of memory storage to that of the classical
PML. We illustrate the efficiency of this improved convolu-
tional PML based on numerical benchmarks using a finite-
difference method on a thin mesh slice for an isotropic mate-
rial and show that results are significantly improved com-
pared with the classical PMLtechnique. We also show that, as
the classical PML, the convolutional technique is intrinsical-
ly unstable in the case of some anisotropic materials.

INTRODUCTION

Because of the very rapid increase of computational power, the
evelopment of methods for the numerical simulation of seismic
ave propagation in complex geologic media has been the subject of
continuous effort during the past three decades. Different ap-

roaches are available to solve the seismic wave equation in such
odels. Among the most popular are the finite-difference method

e.g., Alterman and Karal, 1968; Madariaga, 1976; Virieux, 1986�,
pectral and pseudo-spectral techniques �e.g., Carcione, 1994; Tess-
er and Kosloff, 1994�, boundary-element or boundary-integral
ethods �Kawase, 1988; Sánchez-Sesma and Campillo, 1991�,
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nite-element methods �e.g., Lysmer and Drake, 1972; Marfurt,
984; Bao et al., 1998�, and spectral-element methods �e.g., Cohen
t al., 1993; Priolo et al., 1994; Faccioli et al., 1997; Komatitsch and
ilotte, 1998; Komatitsch and Tromp, 1999; Chaljub et al., 2003�.
ore recently, discontinuous Galerkin formulations have also been

sed �e.g., Dumbser and Käser, 2006�.
In the context of numerical modeling of seismic wave propaga-

ion in unbounded media, as in the case of simulations performed at
he local, regional, or continental scale, energy needs to be absorbed
t the artificial boundaries of the computational domain and there-
ore nonreflecting conditions must be defined at these boundaries to
imic an unbounded medium. In the last 30 years, numerous tech-

iques have been developed for this purpose: damping layers or
ponge zones �e.g., Cerjan et al., 1985; Sochacki et al., 1987�, parax-
al conditions �e.g., Clayton and Engquist, 1977; Engquist and Ma-
da, 1977; Stacey, 1988; Higdon, 1991; Quarteroni et al., 1998�, opti-

ized conditions �e.g., Peng and Töksoz, 1995�, the eigenvalue de-
omposition method �e.g., Dong et al., 2005�, continued fraction ab-
orbing conditions �e.g., Guddati and Lim, 2006�, exact absorbing
onditions on a spherical contour �e.g., Grote, 2000�, or asymptotic
ocal or nonlocal operators �e.g., Givoli, 1991; Hagstrom and Hari-
aran, 1998�. However, all of the local conditions exhibit poor be-
avior under some circumstances. For instance, they typically re-
ect a large amount of spurious energy at grazing incidence or low-
requency energy at all angles of incidence, and nonlocal conditions
re difficult to implement and numerically expensive. In the context
f Maxwell’s equations, Bérenger �1994� introduced a new condi-
ion called the perfectly matched layer �PML� that has the remark-
ble property of having a zero reflection coefficient for all angles of
ncidence and all frequencies before discretization �hence the name
erfectly matched�. This formulation has proven to be more efficient
ompared with classical conditions and has become widely used.
he formulation was rapidly extended to 3D problems �e.g., Chew
nd Weedon, 1994; Bérenger, 1996� and reformulated in a simpler
ay in terms of a split field with complex coordinate stretching �e.g.,
hew and Weedon, 1994; Collino and Monk, 1998b�. The PML is
ow routinely used in many other fields, e.g., linearized Euler equa-
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SM156 Komatitsch and Martin
ions �Hesthaven, 1998�, eddy-current problems �Kosmanis et al.,
999�, and wave propagation in poroelastic media �Zeng et al.,
001�.

Regarding seismic wave propagation, the PML has been success-
ully applied to both acoustic �e.g., Liu and Tao, 1997; Qi and Geers,
998; Abarbanel et al., 1999; Katsibas and Antonopoulos, 2002;
iaz and Joly, 2006; Bermúdez et al., 2007� and elastic problems

e.g., Chew and Liu, 1996; Hastings et al., 1996; Collino and Tsogka,
001; Festa and Nielsen, 2003; Komatitsch and Tromp, 2003; Basu
nd Chopra, 2004; Rahmouni, 2004; Cohen and Fauqueux, 2005;
esta and Vilotte, 2005; Festa et al., 2005; Appelö and Kreiss, 2006;
a and Liu, 2006�. Collino and Tsogka �2001� illustrate the high ef-

ciency of the condition compared with the paraxial treatment of
igdon �1991�, even though the PML reflection coefficient is not ex-

ctly zero after discretization �e.g., Collino and Monk, 1998a�. Com-
ared with other conditions �for instance paraxial equations� that are
esigned to absorb body waves, but that behave poorly for surface
aves, the PML has the additional advantage of being highly effi-

ient for the absorption of such surface waves �Collino and Tsogka,
001; Komatitsch and Tromp, 2003; Festa et al., 2005�.

Aclassical PML for the seismic wave equation is naturally formu-
ated in terms of velocity and stress, i.e., for a system of first-order
quations in time �e.g., Collino and Tsogka, 2001; Komatitsch and
romp, 2003�. Unfortunately, this means that it cannot be used di-
ectly in numerical schemes that are based on the wave equation
ritten as a second-order system in displacement, such as most fi-
ite-element methods �e.g., Bao et al., 1998�, most spectral-element
ethods �e.g., Komatitsch and Vilotte, 1998; Komatitsch and
romp, 1999�, and some finite-difference methods �e.g., Moczo et
l., 2001�. Therefore, in recent years efforts have been made to de-
ive PML formulations suitable for such a second-order system writ-
en in displacement: Komatitsch and Tromp �2003� and Basu and
hopra �2004� derived formulations of the PML that are directly
dapted to second-order equations, Festa and Vilotte �2005� show
hat the classical first-order PML formulation can be used as it is
ased upon a discrete equivalence between the Newmark time-step-
ing method and the midpoint rule applied to a staggered velocity-
tress system, and Cohen and Fauqueux �2005� chose the alternative
pproach of adapting the spectral-element method to the PML by
onstructing a spectral-element formulation based on the mixed ve-
ocity-stress system, which is well suited to the introduction of PML.
nother approach consists of writing the PML system based on an

ntegral term in time and computing the integral using the trapezoi-
al rule �e.g., Zeng et al., 2001, Wang and Tang, 2003; Festa and
ilotte, 2005� but the overall accuracy of this approach could de-

erve further study because the trapezoidal rule is exact for polyno-
ials of degree 1 only.
A recurring problem in the context of the use of a discrete PML
odel for Maxwell’s equations or for the equations of elastodynam-

cs is that the reflection coefficient is not zero after discretization, but
ore importantly that it becomes very large at grazing incidence

e.g., Collino and Monk, 1998a; Winton and Rappaport, 2000�. In
his case, a large amount of energy is sent back into the main domain
n the form of spurious reflected waves. This makes the classical
ML less efficient for instance in the case of thin mesh slices, or in

he case of sources located close to the edge of the mesh, or receivers
ocated at very large offset, which are situations that are rather com-

on, for example in oil industry simulations. To overcome this prob-
em, Collino and Monk �1998a� calculate the analytical expression
f the numerical reflection coefficient of a discrete scheme for Max-
ell’s equations for the classical 2D staggered finite-difference grid
f Yee �1966� and sum the values of this discrete coefficient for vari-
us angles of incidence �by steps of 1° between normal incidence
nd grazing incidence�. They then use a least-squares algorithm to
ptimize the discrete damping profile at each point of the finite-dif-
erence grid in the PMLlayer to globally minimize the amount of en-
rgy sent back into the medium, which means making discrete PML
bsorption less efficient near normal incidence, where it is already
lmost perfect, to make it more efficient at grazing incidence, where
t is poor. Fontes �2006� tried to use the same approach for the elastic
ave equation by calculating the analytical expression of the four
iscrete reflection coefficients: Rpp, Rps, Rsp, and Rss for the clas-
ical 2D staggered finite-difference grid of Madariaga �1976� and
irieux �1986� to be able to then use a least-squares technique to glo-
ally minimize the amount of energy sent back into the main domain
n the form of spurious P- and/or S-waves, this for all the range of
ossible angles of incidence by sampling this range every degree be-
ween 1° and 90°. He gave up this approach because the situation in
lastodynamics is more complicated than for Maxwell’s equations
tudied by Collino and Monk �1998a� because there are two types of
ody waves �P and S� and thus four discrete reflection coefficients,
nd it is therefore not easy to decide which coefficient to optimize,
or to make sure that optimizing one of them will not degrade the
thers. It is difficult to plan to optimize the four coefficients simulta-
eously because one does not control the quantity of energy that ar-
ives on a PML edge independently in the form of plane P- and
-waves. We could think of optimizing the arithmetic mean of the
our coefficients, but this is not realistic from a geophysical point of
iew because the quantity of energy arriving on the edge of the medi-
m in the form of P- and S-waves strongly depends on the radiation
attern of the seismic source and on the geologic medium consid-
red, and therefore such an optimization would not be possible inde-
endently of the medium under study. Moreover such an analysis
oes not include surface waves, which often carry a large amount of
nergy.

Another approach to improve the behavior of the discrete PML at
razing incidence consists in modifying the complex coordinate
ransform used classically in the PML �see next section� to introduce
frequency-dependent term �Kuzuoglu and Mittra, 1996� that im-
lements a Butterworth-type filter in the layer. This approach has
een developed for Maxwell’s equations by Kuzuoglu and Mittra
1996� and Roden and Gedney �2000� and named convolutional-
ML �C-PML� or complex frequency shifted-PML �CFS-PML�
Bérenger, 2002a, b�. The key idea is that for waves whose incidence
s close to normal, the presence of such a filter changes almost noth-
ng because absorption is already almost perfect. But for waves with
razing incidence, which for geometrical reasons do not penetrate
ery deep in the PML, but travel there a longer way in the direction
arallel to the layer, adding such a filter will strongly attenuate them
nd will prevent them from leaving the PML with significant energy.
n this study, we adapt this approach to the equations of elastody-
amics. Let us note that a similar idea called the generalized filter-
ng-PML was used recently in elastodynamics �Festa and Vilotte,
005� in the context of a variational formulation based on the spec-
ral-element method. However, that implementation is based, like
he original formulations of Bérenger �1994� and Collino and
sogka �2001�, on a split formulation of the equations of elastody-
amics. The formulation that we introduce has the advantage of not
eing split. Its cost in terms of memory storage is similar to that of
he classical PML.
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An improved PML for the wave equation SM157
CLASSICAL PML FORMULATION
IN VELOCITY AND STRESS

The differential or strong form of the anisotropic elastic wave
quation can be written as

��t
2s = � · �c: �s� , �1�

here s = s�x,t� is the displacement vector, c the full elastic tensor
ith up to 21 independent coefficients, and � the density. The fre-
uency-domain form of this equation is

−��2s = � · �c: �s� , �2�

here � denotes angular frequency and where, for simplicity, we
ave used the same notation s = s�x,�� for the displacement vector
n the frequency domain. We will use the same notation in both do-

ains for other variables in the rest of this article. In the particular
ase of a homogeneous medium, this equation has plane wave solu-
ions of the form A exp�− i�k ·x − �t��, where A represents the am-
litude and polarization of the plane wave, k = kxx̂ + kyŷ + kzẑ its
ave vector with Cartesian components kx, ky, and kz, and x = xx̂
yŷ + zẑ the position vector. In the case of an isotropic medium, for

lane P-waves A�k = 0 and k = �kx
2 + ky

2 + kz
2�1/2 = �/�, where �

enotes the P-wave velocity, whereas for plane S-waves A ·k = 0
nd k = �/�, where � denotes the S-wave velocity.

Following the discussions in Chew and Weedon �1994�, Collino
nd Monk �1998a�, Teixeira and Chew �1999�, and Collino and
sogka �2001�, to which the reader is referred for more details, the
ML can be viewed as an analytical continuation of the real coordi-
ates in the complex space. Let us consider a PML layer located at x
0 and the regular domain located at x�0 �Figure 1�. One first de-

nes a damping profile dx�x� in the PML region, such that dx = 0 in-
ide the main domain �i.e., outside the PML� and dx �0 in the PML.
et us note that subscript x is just a label for the x-axis, whereas argu-
ent x is a real variable. A new complex coordinate x̃ is then intro-

uced and expressed in terms of this damping profile as:

x̃�x� = x −
i

�
�

0

x

dx�s�ds �3�

r, equivalently, upon differentiating

�x̃ =
i�

i� + dx
�x =

1

sx
�x, �4�

ith

sx =
i� + dx

i�
= 1 +

dx

i�
. �5�

he goal is now to change the original equation 1 written in terms of
ariables x, y, and z, into a new wave equation written in terms of
ariables x̃, y, and z. To do this, let us denote by n̂ the normal to the
nterface between the model and the PML region. The gradient oper-
tor � can be split in terms of components perpendicular and parallel
o the interface:

� = n̂�x + �� . �6�
ere �x = n̂ ·� and �� = �I − n̂n̂� ·�, where I is the 3�3 identity
ensor, and I − n̂n̂ is the projection operator onto the surface with
ormal n̂.
In the classical first-order velocity-stress formulation �e.g., Col-

ino and Tsogka, 2001�, one first rewrites equation 1 as

��tv = � · � ,

�t� = c: � v , �7�

here v is the velocity vector and � the second-order stress tensor.
he frequency-domain form of this system of equations is

i��v = � · � ,

i�� = c: � v . �8�

sing equation 6, one gets

i��v = n̂�x · � + �� · � ,

i�� = c:n̂�xv + c:��v . �9�

ne then replaces the wave equation 9 written in terms of x with a
eneralized wave equation written in terms of x̃:

i��v = n̂�x̃ · � + �� · � ,

i�� = c:n̂�x̃v + c:��v . �10�

nside the main domain, both equations are identical because dx = 0.
ut in the PML, this modified wave equation has exponentially de-
aying plane wave solutions of the form:

Ae−i�kxx̃+kyy+kzz−�t� = Ae−i�k·x−�t�e−kx/��
0

x
dx�s�ds �11�

n the n̂ direction �i.e., the x-direction here� with a decay coefficient
xp�− kx/��

0

xdx�s�ds� that is inversely proportional to the angular
requency � of the plane wave. Let us note that this damping coeffi-
ient depends on the direction of propagation of the wave, and is
arge for a wave propagating close to normal incidence, but becomes
ignificantly smaller for a wave propagating at grazing incidence,
hich explains the reduced efficiency of the classical PMLmodel at-
razing incidence. Let us also note that the reflection coefficient be-
ween the medium and the PML region is exactly zero for all angles

PML 

0 

Regular 
domain 

x 

n̂

igure 1. Definition of the main domain and the PML layer. The
ML region starts at x = 0 and extends to x�0. The local normal to

he interface is denoted by n̂.



o
m
u
o

T
a
2

C

w
t
fi

a
s
c
h
�
1
�
n
R
d
C
e
2

e
f
i
t
t
c

w
i
o
g
t
p
a
t
i
s
d
n
s
t
i
w

c
G
d
a

I
c
w
e
e
G
2

R

a
t

w
t

w

T
c


t
t

SM158 Komatitsch and Martin
f incidence and all frequencies here, before discretization by a nu-
erical scheme, hence the name perfectly matched layer. One then

ses the mapping equation 4 to rewrite the wave equation 10 in terms
f x rather than x̃:

i��v = n̂
1

sx
�x · � + �� · � ,

i�� = c:n̂
1

sx
�xv + c:��v . �12�

he velocity and stress fields are then split into two parts �e.g., Chew
nd Weedon, 1994; Collino and Monk, 1998b; Collino and Tsogka,
001�, v = v1 + v2 and � = �1 + �2, such that

i��v1 =
1

sx
n̂ · �x� ,

i��v2 = �� · � ,

i��1 = c:n̂
1

sx
�xv ,

i��2 = c:��v . �13�

onverting back to the time domain one finally gets

��t + dx��v1 = n̂�x · � ,

�t�v2 = �� · � ,

��t + dx��1 = c:n̂�xv ,

�t�
2 = c:��v , �14�

hich permits the desired exponentially decaying plane wave solu-
ions of equation 11 and governs wave propagation in the classical
rst-order PML.
As mentioned in the introduction, there are two main drawbacks

ssociated with this classical formulation: First it requires the use of
plit fields, and second, and more importantly, its efficiency be-
omes poor at grazing incidence after discretization. The first issue
as been addressed in literature in the case of Maxwell’s equations
e.g., Gedney, 1996; Veihl and Mittra, 1996; Zhao and Cangellaris,
996; Sullivan, 1997; Bérenger, 2002b� or the elastic wave equation
e.g., Wang and Tang, 2003; Rahmouni, 2004; Drossaert and Gian-
opoulos, 2007b�. The C-PML approach has been developed by
oden and Gedney �2000� in the case of Maxwell’s equations to ad-
ress both issues. In what follows, we introduce such an unsplit
-PML technique for elastodynamics, as presented in 3D by Martin
t al. �2005� and Martin and Komatitsch �2006�, and more recently in
D by Drossaert and Giannopoulos �2007a�.

THE C-PML TECHNIQUE TO IMPROVE
THE DISCRETE PML MODEL AT

GRAZING INCIDENCE

Let us now introduce the C-PML technique for the equations of
lastodynamics written in differential form in velocity and stress,
ollowing the approach of Roden and Gedney �2000�. The technique
s based on the writing of the PML model in the form of a convolu-
ion in time and on the introduction of memory variables to not have
o explicitly store all the past states of the medium to carry out the
onvolution, but rather to calculate this convolution in a recursive
ay as suggested in Luebbers and Hunsberger �1992� and improved
n Roden and Gedney �2000�. Let us note that the idea of using mem-
ry variables is rather similar to that used in numerical modeling in
eophysics to implement viscoelasticity in the seismic wave equa-
ion �e.g., Carcione et al., 1988; Day, 1998�. Let us note that, as op-
osed to the traditional scheme of Collino and Tsogka �2001�, this
pproach has the advantage of not being split, i.e., its implementa-
ion in existing finite-difference codes �without PML� is slightly eas-
er because terms within the equations do not need to be split into
eparate equations, though extra memory terms have to be added. In-
eed, as we do not need to split the unknowns v and �, there is no
eed to modify the structure of the loops computing these arrays. It is
ufficient to add an array to store each of these memory variables �in
he PML layer only and not in the main domain, in which the damp-
ng coefficient is zero� and a loop to update each memory variable,
hich is straightforward.
The main idea of the C-PML technique consists of making a

hoice for sx more general �Kuzuoglu and Mittra, 1996; Roden and
edney, 2000; Bérenger, 2002a, b� than that of equation 5 by intro-
ucing not only the damping profile dx, but also two other real vari-
bles �x 	0 and 
x 	1 such that:

sx = 
x +
dx

�x + i�
. �15�

n the particular case of 
x = 1 and �x = 0, we get the classical PML
oordinate transformation.As this expression depends on frequency,
hen we go back to the time domain we get a time convolution on

ach modified spatial derivative. Denoting by s̄x�t� the inverse Fouri-
r transform �labeled an inverse Laplace transform in Roden and
edney �2000�� of 1/sx, �x is replaced with �Roden and Gedney,
000�:

�x̃ = s̄x�t� � �x. �16�

ewriting equation 15 as

1

sx
=

1


x
−

dx


x
2

1

�dx/
x + �x� + i�
�17�

nd noting that the Fourier transform of � is 1 and that the Fourier
ransform of e−atH�t� is 1/�a + i�� we get the value of s̄x:

s̄x�t� =
��t�

x

−
dx


x
2H�t�e−�dx/
x+�x�t, �18�

here ��t� and H�t� denote the Dirac delta and Heaviside distribu-
ions, respectively. If we denote:

�x�t� = −
dx


x
2H�t�e−�dx/
x+�x�t, �19�

e see that �x is finally transformed in:

�x̃ =
1


x
�x + �x�t� � �x. �20�

he first of these two terms is easy to handle in an existing numerical
ode: One simply needs to divide the computed spatial derivative by
x. To compute the second term in the context of a discrete staggered

ime scheme, let us assume that we have discretized the time in N
ime steps of equal duration 
t. The convolution term computed at
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An improved PML for the wave equation SM159
ime step n, which we will denote �x
n in the following for conve-

ience, can then be written:

�x
n = ��x � �x�n = �

0

n
t

��x�n
t−� �x�� �d� . �21�

ecause the time integration scheme is staggered, �x is defined half a
ime step between m
t and �m + 1�
t and we can therefore write:

�x
n = �

m=0

n−1 �
m
t

�m+1�
t

��x�n
t−� �x�� �d�

= �
m=0

n−1

��x�n−�m+1/2��
m
t

�m+1�
t

�x�� �d�

= �
m=0

n−1

Zx�m���x�n−�m+1/2�, �22�

ith:

Zx�m� = �
m
t

�m+1�
t

�x�� �d� . �23�

sing equation 19 we then obtain

Zx�m� = −
dx


x
2�

m
t

�m+1�
t

e−�dx/
x+�x�� d� = axe
−�dx/
x+�x�m
t,

�24�

ith

bx = e−�dx/
x+�x�
t

nd

ax =
dx


x�dx + 
x�x�
�bx − 1� . �25�

rom a numerical point of view, the calculation of the convolution
erm written in equation 22 is costly because it requires at each time
tep a sum over all the previous time steps �sum over index m�. For-
unately, as noted by Luebbers and Hunsberger �1992�, because of
he simple exponential form of term Zx in equation 24, this sum can
e efficiently performed based on a recursive convolution technique
y considering �x as a memory variable whose time evolution is gov-
rned at each time step by:

�x
n = bx�x

n−1 + ax��x�n+1/2. �26�

his approach is interesting from a numerical point of view because
t requires a computation time that is very small and because it im-
lies the storage in memory of only one additional array for each de-
ivative �and in the PML region only�. To summarize, from a practi-
al point of view, the implementation of the C-PML technique in an
xisting finite-difference code �without PML� is straightforward be-
ause one simply needs to replace each spatial derivative �x with

�x̃ =
1


x
�x + �x �27�

nd update �x in time according to equation 26. The same approach
an of course be used to implement C-PML layers along the other

_

patial directions �y or z�. Let us note that, as in the classical PML, no
articular treatment is needed in the corners of the grid: The �x, �y,
nd �z contributions coming from the PML layers located along x, y,
nd z, respectively, are simply summed.

In terms of numerical efficiency, in Table 1 we give the maximum
umber of arrays that are needed in the PML layers to implement in
D or 3D: the classical PML technique �e.g., Collino and Tsogka,
001� without storing the total field, i.e., the sum of the split compo-
ents, which is then recomputed in each loop; the classical PML
echnique, storing the total field; and the C-PML technique. This

aximum number is reached in regions in which all the PML layers
re present, i.e., in the corners of the domain. For comparison, we
lso recall the number of arrays needed when no absorbing condi-
ions are implemented in the finite-difference technique. In the clas-
ical PML technique, the two options correspond to the fact that one
an either choose to store the total field, which is needed several
imes in the algorithm at each time step, in addition to the split com-
onents of the field, which increases memory storage, but reduces
omputation time because one does not need to recompute the sum
f the components several times in each iteration of the time loop. Or
ne can proceed the other way around and decide not to store the to-
al field, but rather recompute it, which decreases memory storage,
ut increases CPU time. In any case, it is important to mention that
he small difference in storage applies only in the PMLlayers and not
n the main domain and is therefore negligible. For example, consid-
r a typical 3D model of size 500�500�500 grid points, with PML
ayers composed of 10 grid points on its six sides. The difference of
hree more arrays needed to implement C-PML, compared to PML
ithout storing the total field, corresponds to 3� �5003 − 4803�

tored values, compared to a total memory of 9�4803 in the main
omain without PML, plus 24� �5003 − 4803� in the PML layers,
eads to an increase of only 3.2% of the total memory used.

NUMERICAL TESTS

To test the C-PML model introduced, we need to select a numeri-
al method among all the widely used techniques mentioned in the
ntroduction available to solve the differential seismic wave equa-
ion. We choose to implement the simplest technique, the finite-dif-
erence method, in which partial derivatives are approximated by
iscrete operators involving differences between adjacent grid

able 1. Maximum number of arrays needed in the PML
ayers to implement in 2D or in 3D: the classical PML tech-
ique (e.g., Collino and Tsogka, 2001) without storing the
otal field, i.e. the sum of the split components, which is then
ecomputed in each loop; the classical PML technique, stor-
ng the total field; and the C-PML technique. This maximum
umber is reached in regions in which all the PML layers
re present, i.e., in the corners of the domain. The small
ifference in storage applies only in the PML layers and not

n the main domain and is therefore negligible. For compar-
son, we also recall the number of arrays needed when no
bsorbing conditions are implemented in the finite-difference
echnique.

No PML
PML

without total
PML

with total C-PML

2D 5 10 15 13

3D 9 24 33 27
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SM160 Komatitsch and Martin
oints. More specifically, we use the classical second-order stag-
ered grid in space and time used in many applications and intro-
uced for Maxwell’s equations by Yee �1966� and for elastodynam-
cs by Madariaga �1976�, and used by Virieux �1986�.

ase of an isotropic medium

We consider a 3D model of size 1000�6400�6400 m represent-
ng a domain much longer than wide �i.e., a thin slice� to favor the
ropagation of waves at grazing incidence, which constitutes the
ase, difficult for the classical PML technique, that we want to test.
his model is discretized using a grid comprising 101 points
641 points�641 points. The size of a grid cell is 
x = 
y = 
z
10 m. The nine variables vx, vy, vz, �xx, �yy, �zz, �xy, �xz, and �yz, as
ell as the memory variables that implement the recursive convolu-

ion, are discretized on the grid represented in Figure 2. The medium
s homogeneous and isotropic and has a compressional wave speed
p = 3300 m.s−1, a shear wave speed cs = cp/�3�1905.3 m.s−1

i.e., Poisson’s ratio is equal to 0.25�, and density � = 2800 kg.m−3.
s time integration is based on an explicit scheme, the time step 
t
ust verify the Courant-Friedrichs-Lewy stability condition �Cou-

ant et al., 1928�:

cp
t� 1


x2 +
1


y2 +
1


z2 � 1. �28�

n the case of a uniform mesh size in all the spatial directions, i.e.,
hen 
x = 
y = 
z we thus have cp
t/
x��1/D, where D is the

patial dimension of the problem, i.e., in dimension D = 3 the upper
ound is 1/�3�0.577. We select 
t = 1.6 milliseconds, which cor-
esponds to a Courant number of 0.528. We perform the simulation
or 2500 time steps, i.e., a total duration of four seconds. Because the
ize of the mesh is large, we implement our finite-difference algo-
ithm on a parallel computer based on a mixed message-passing MPI
e.g., Gropp et al., 1994� and shared-memory OpenMP �e.g., Chan-
ra et al., 2000� model.

The point source is a velocity vector oriented at 135° in the �x,y�
lane and located at x = 790 m, y = 4270 m, and z = 3190 m. Its
ime variation is the first derivative of a Gaussian of dominant fre-
uency f0 = 7 Hz shifted by t0 = 1.2/f0 = 0.17 second from time t
0 to have null initial conditions. We record the time evolution of

he components of the velocity vector at three points in the medium:

vy

vx σxx

xy

σyy

y

x σxx
σyy
σzz

σxz

vx

vz

vy

σyz

σxy

z

x

y

) b)

igure 2. Elementary grid cells of the �a� 2D and �b� 3D staggered
patial finite-difference method of Madariaga �1976� and Virieux
1986� used classically to discretize the equations of elasto-
ynamics.
x1 = 200 m, y1 = 4130 m�, �x2 = 700 m, y2 = 2300 m�, and �x3

800 m, y3 = 300 m� in the same z = 3190 m plane as the source.
he angle of 135° was selected for the source to have a radiation pat-

ern that sends both significant P- and S-wave energy in the PMLlay-
rs at both normal and grazing incidence.

Absorbing layers are implemented on the six sides of the model.
hey have a thickness of 100 m, which corresponds to 10 grid cells.
ollowing Gedney �1998� and Collino and Tsogka �2001�, for the
amping coefficient in the PML we select a profile of the form dx�x�
d0�x/L�N along the x-axis, dy�y� = d0�y /L�N along the y-axis, and

z�z� = d0�z/L�N along the z-axis, where L is the thickness of the ab-
orbing layer and N = 2. Recalling that the PML reflection coeffi-
ient is not exactly zero after discretization by any numerical scheme
e.g., Collino and Monk, 1998a�, as mentioned in the introduction,
e select a target theoretical reflection coefficient after discretiza-

ion Rc = 0.1% and then define d0 = − �N + 1�cp log�Rc�/�2L�
341.9 as in Collino and Tsogka �2001�. Following Roden and
edney �2000�, we choose to make �x, �y, and �z vary in a linear

ashion in their respective PML layer between a maximum value
max at the beginning �i.e., the entrance� of the PML and zero at its

op. As in Festa and Vilotte �2005�, we take �max = �f0, where f0 is
he dominant frequency of the source defined above. Variable 
 was
ntroduced in Roden and Gedney �2000� primarily to attenuate eva-
escent waves in electromagnetics. Several numerical tests �not pre-
ented here� indicate that in the case of the seismic wave equation it
oes not seem to have a crucial effect, and we therefore choose 
x


y = 
z = 1. On the external edges of the layer at the top of the
ML, we impose a Dirichlet condition on the velocity vector �v = 0
or all t�. Let us note that it is crucial to correctly define coefficients
x, bx, ay, by, az, and bz that govern the time evolution of the memory
ariables �equation 25� at the right location in the staggered grid of
igure 2. Coefficients ax and bx must be defined at the grid cell for
emory variables �x acting on vx, �xy, and �xz, but at half the grid cell

or those acting on vy, vz, �xx, �yy, �zz, and �yz. Similarly, ay and by

ust be defined at the grid cell for memory variables �y acting on vx,
z, �xx, �yy, �zz, and �xz, but at half the grid cell for those acting on vy,
xy, and �yz. In the same fashion, az and bz must be defined at the grid
ell for memory variables �z acting on vx, vy, �xx, �yy, �zz, and �xy, but
t half the grid cell for those acting on vz, �xz, and �yz. Let us also note
hat, as in the classical PML formulation, in the corners of the grid
he contributions coming from the terms in which dx, dy, or dz appear
re simply summed. The corners are thus treated naturally without
ny modification of the computer code.

Figure 3 represents snapshots of the vy component of the velocity
ector in the �x,y� plane located at z = 3190 m at six different time
teps for a simulation with C-PML. No spurious waves of significant
mplitude are visible, even at grazing incidence. It is important to
ompare the behavior of the C-PML condition at grazing incidence
o that of the classical PML model �e.g., Collino and Tsogka, 2001�
mplemented based on split fields. Figure 4 represents the same
napshots when the classical PML is implemented. One can notice
hat spurious waves appear at grazing incidence along the edges of
he model and send spurious energy back into the main domain. Fig-
re 5 represents the time evolution at the three recording points of
he vx and vy components of the velocity vector for the numerical cal-
ulations with C-PML compared with the exact solution of the prob-
em. Let us mention that the exact solution of the numerical problem
s purposely computed numerically �rather than analytically� using
he same finite-difference method without C-PML on a very large

esh to have exactly the same numerical dispersion in the reference
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Figure 3. Snapshots in the �x,y� plane located at
z = 3190 m of the vy component of the 3D ve-
locity vector for a model corresponding to a thin
slice with C-PML conditions implemented on
the six sides, at time 0.6 s �top�, 1 s, 1.4 s, 1.8 s,
2.2 s, and 2.6 s �bottom�. We represent the com-
ponent in red �positive� or blue �negative� at
each grid point when it has an amplitude higher
than a threshold of 1% of the maximum, and the
normalized value is raised to the power 0.30 to
enhance small amplitudes that would otherwise
not be clearly visible. The orange cross indi-
cates the position of the source and the green
squares indicate the position of the receivers at
which the seismograms represented in Figure 5
are recorded. The four vertical or horizontal or-
ange lines represent the edge of each layer
PML. No spurious wave of significant ampli-
tude is visible, even at grazing incidence. The
snapshots have been rotated by 90° to fit on the
page.
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Figure 4. Snapshots in the �x,y� plane located at
z = 3190 m of the vy component of the 3D ve-
locity vector for a model corresponding to a thin
slice with classical PML conditions �e.g., Col-
lino and Tsogka, 2001� implemented on the six
sides, at time 0.6 s �top�, 1 s, 1.4 s, 1.8 s, 2.2 s,
and 2.6 s �bottom�. We represent the compo-
nent in red �positive� or blue �negative� at each
grid point when it has an amplitude higher than
a threshold of 1% of the maximum, and the nor-
malized value is raised to the power 0.30 to en-
hance small amplitudes that would otherwise
not be clearly visible. The orange cross indi-
cates the position of the source and the green
squares indicate the position of the receivers at
which the seismograms represented in Figure 6
are recorded. The four vertical or horizontal or-
ange lines represent the edge of each layer
PML. Compared to Figure 3, spurious waves
appear at grazing incidence along the edges of
the model and send spurious energy back into
the main domain. The snapshots have been ro-
tated by 90° to fit on the page.
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SM162 Komatitsch and Martin
olution and be able to focus on artifacts coming from the C-PML
dges only. Strictly speaking it is therefore very accurate, but not ex-
ct. At the first receiver, relatively far from the beginning �i.e., the
ntrance� of the PML layer and at nongrazing incidence, the agree-
ent is almost perfect. At the second receiver, at grazing incidence

nd rather close to the beginning of the PML layer, the agreement re-
ains good.At the third receiver, in the difficult case of very grazing

ncidence, of a long distance of propagation, thus accumulating nu-
erical dispersion, and of a receiver located close to the beginning

f the PML layer �at a distance of 100 m, which corresponds to 10
rid cells�, the agreement remains satisfactory, which illustrates the
ood performance of the C-PML. To compare again the behavior of
he C-PML condition at grazing incidence to that of the classical
ML model �e.g., Collino and Tsogka, 2001� implemented based on
plit fields, Figure 6 represents the same test when the classical PML
odel is used. At the first receiver, close to normal incidence, both
-PML and PML give an almost perfect result. But at the second re-
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igure 5. Time evolution of the vx �left� and vy �right� components of
or at the �a� first, �b� second, and �c� third receiver of the exact solu
solid line� and the numerical solution with C-PML �dotted line� for t
ment of Figure 3.At the first receiver, relatively far from the beginni
f the PML layer and with nongrazing incidence, the agreement is al
econd receiver, with grazing incidence and rather close to the beginn
r, the agreement remains good. At the third receiver, in the difficult
ncidence, of a long distance of propagation, thus accumulating nu
nd of a receiver located close to the beginning of the PML layer �at
hich corresponds to 10 grid cells�, the agreement remains satisfacto

he good performance of the C-PML.
eiver, spurious oscillations start to appear in the case of PML,
hich can be observed in particular for the S-wave on the vy compo-
ent. At the third receiver, the oscillations become large, the P-wave
s not correctly calculated and the shape of the S-wave is completely
istorted. Overall, it is clear that the results given by the classical
ML model exhibit more oscillations and of larger amplitude than

he C-PML solution, which illustrates the efficiency of the C-PML
ondition at grazing incidence.

We now study the decay of energy in the grid to check the efficien-
y of the discrete C-PML model, in particular at grazing incidence.
igure 7 represents the time decay of total energy:

E =
1

2
��v�2 +

1

2�
i=1

D

�
j=1

D

�ij�ij �29�

n the main domain �i.e., in the medium without the six PML layers�
or the simulation presented in Figure 3 for C-PML and in Figure 4

for PML. We observe that between approximate-
ly 0 and 0.25 s, the source injects energy in the
medium. Then, the energy carried by the P- and S-
waves is gradually absorbed in the PML layers.
Around approximately 3 s the S-wave, which is
slower, reaches the farthest edge of the grid and
should then theoretically completely leave the
medium, which results in a steep decay of total
energy. After approximately 3 s, theoretically
there should remain no energy in the medium be-
cause both the P- and S-waves have left the main
domain. All the energy that remains is therefore
spurious and constitutes a good measurement of
the efficiency of the absorbing technique used. In
the case of PML, at 4 s there remains a total ener-
gy of 235.12 J, whereas in the case of C-PML
there remains a total of 3.83�10−2 J, i.e., 6139
times smaller.

It is also interesting to study the issue of the sta-
bility of the C-PML model at longer times. In-
deed, we know that in many PML models, for ex-
ample in the case of Maxwell’s equations, weak
or strong instabilities can develop at longer times
�e.g., Abarbanel et al., 2002; Bécache and Joly,
2002; Bécache et al., 2004�. To study this ques-
tion from a numerical point of view, in Figure 8
we make the experiment of Figure 3 last for
100,000 time steps instead of 2500. Total energy
decreases continuously and we do not observe in-
stabilities developing, which means that the dis-
crete C-PML model is stable up to 160 s.

Case of an anisotropic medium

We have seen above that the C-PML technique
consists of replacing spatial derivatives in the
seismic wave equation 7 with the modified equa-
tion 27, in which the time evolution of the memo-
ry variable �x is governed by equation 26, with
coefficients ax and bx given by equation 25 that do
not depend on the physical properties of the medi-
um. Therefore, the method should work in the an-
isotropic case without any modification.
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To validate it in such a case, we study two orthotropic crystals,
reviously analyzed by Bécache et al. �2003� and whose slowness
urves are given there, in the ultrasonic frequency range. For com-
arison we perform the simulations in two dimensions, as in Bé-
ache et al. �2003�. The five variables vx, vy, �xx, �yy, and �xy, as well
s the memory variables that implement the recursive convolution,
re discretized on the grid represented in Figure 2. For the first medi-
m, the anisotropic constants are c11 = 4�1010 N.m−2, c22 = 20
1010 N.m−2, c12 = 3.8�1010 N.m−2, c33 = 2�1010 N.m−2, and
= 4000 kg.m−3, and for the second medium they are c11 = c22

20�1010 N.m−2, c12 = 3.8�1010 N.m−2, c33 = 2�1010 N.m−2,
nd � = 4000 kg.m−3. The size of the model is 25�25 cm. The
ource is a vertical force located at the center of the model and with a
ominant frequency f0 of 200 kHz, shifted by t0 = 7 �s from time t
0 to have null initial conditions. The mesh is composed of 401
401 grid points, i.e., the size of a grid cell is 0.0625 cm, and the

ime step is 50 nanoseconds, because in dimension D = 2 the upper
ound of the Courant stability condition is 1/�2�0.707. The simula-
ion is performed for a total duration of 150 �s. The PML regions
ave a thickness of 0.625 cm, which corresponds to 10 grid cells,
nd are implemented on the four sides of the mesh
o mimic an infinite medium. We use the same
caling as in the isotropic case above for the
amping coefficients. Figure 9 shows snapshots
f wave propagation at times t = 20 �s, t
40 �s, t = 60 �s, and t = 80 �s. One can ob-

erve that the classical patterns in such anisotrop-
c media, namely the quasi-pressure �qP� wave
nd the quasi-shear �qS� wave, are efficiently ab-
orbed and that no numerical instabilities appear.
e then let the simulation run for 20,000 time

teps to check the stability of the method from an
xperimental point of view and did not observe
ny instability.

Unfortunately, Bécache et al. �2003� have
hown that the stability of the classical PMLmod-
l depends on the physical properties of the aniso-
ropic medium and that the model can be intrinsi-
ally unstable �mathematically, before numerical
iscretization� for some anisotropic media, for in-
tance if the stiffness parameters do not satisfy
he following three necessary high-frequency sta-
ility conditions:

��c12 + c33�2 − c11�c22 − c33����c12 + c33�2

+ c33�c22 − c33�� � 0,

�c12 + 2c33�2 − c11c22 � 0,

�c12 + c33�2 − c11c22 − c33
2 � 0. �30�

hese conditions can be interpreted in terms of
he geometric properties of the slowness surfaces:
or instance, a PML parallel to the x-axis �thus
bsorbing waves coming from the y�0 half-
pace� is unstable if projections of the slowness
ector and of the group velocity vector on the
-axis have opposite signs. The geometric condi-
ion is satisfied for all the slowness curves related
o the qP-waves, and therefore the cause of the in-
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ponent, start t
not correctly c
tabilities reported by Bécache et al. �2003� comes from the viola-
ion of the high-frequency stability condition by the qS-waves. Be-
ause we have not changed the basic mathematical idea behind the
ML �we have simply used the more general complex coordinate

ransform of equation 15 instead of equation 5�, the C-PML model
uffers from the same limitation and is intrinsically unstable if the
nisotropic medium does not satisfy the stability conditions of equa-
ion 30.

To illustrate this, we study two transversely isotropic crystals with
vertical symmetry axis, apatite and zinc, in the ultrasonic frequen-
y range �e.g., Komatitsch et al., 2000�. For apatite, the anisotropic
onstants are c11 = 16.7�1010 N.m−2, c22 = 14�1010 N.m−2, c12

6.6�1010 N.m−2, c33 = 6.63�1010 N.m−2, and � = 3200
g.m−3, and for zinc, they are c11 = 16.5�1010 N.m−2, c22 = 6.2
1010 N.m−2, c12 = 5�1010 N.m−2, c33 = 3.96�1010 N.m−2, and
= 7100 kg.m−3. The source now has a dominant frequency of

00 kHz for apatite and of 170 kHz for zinc. Figure 10 shows that
trong instabilities develop in the PML when the slowest wave, i.e.,
he qS-wave with its cuspidal triangles, penetrates in the layer and
hat the simulation becomes unstable.
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tion of the vx �left� and vy �right� components of the 3D velocity vec-
second, and �c� third receiver of the exact solution of the problem

umerical solution with the classical PML �e.g., Collino and Tsogka,
r the numerical experiment of Figure 4.At the first receiver, relative-
ning �i.e. the entrance� of the PML layer and with nongrazing inci-
t is almost perfect. But compared to Figure 5, at the second receiver
, which can be observed in particular for the S-wave on the vy com-
r. At the third receiver, the oscillations become large, the P-wave is
ed and the shape of the S-wave is completely distorted.
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It is important to note that the model is unstable for rather com-
on materials �such as zinc� and, therefore, it is not very useful in

ractice for crystals because many widely studied anisotropic media
ill violate the stability conditions �equation 30�. A somewhat simi-

ar situation �although simpler, because the slowness curves of crys-
als can be very complex� is found in aeroacoustics, for which the
lassical PML model must be reformulated to be made stable �Abar-
anel et al., 1999; Hu, 2001; Diaz and Joly, 2006�. It would be inter-
sting to study if a similar approach could be used to stabilize PML
n anisotropic media. Let us also mention that some slowly growing
nstabilities might not be observed if one uses a relatively small
umber of time steps, as for the anisotropic simulations in Collino
nd Tsogka �2001�, but that they become clear if one lets the simula-
ion run for a sufficiently large number of time steps.

It is equally important to mention that the situation is very differ-
nt in other fields, such as the simulation of seismic wave propaga-
ion in the oil industry or in global or regional seismology, in which
nisotropy always consists in small perturbations of a few percents
ith respect to an isotropic reference model, in which case the stabil-

ty conditions �equation 30� will always be fulfilled.
In terms of the intrinsic instabilities observed for some anisotrop-

c materials �Bécache et al., 2003; Appelö and Kreiss, 2006�, in fu-
ure work it would be interesting to try to overcome such limitations
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igure 7. Decay of total energy with time in the main domain �i.e., in
he medium without the six PML layers� on a semilogarithmic scale
or the simulations presented in Figures 3 and 4. One can observe
hat between approximately 0 and 0.25 s, the source injects energy
n the medium. Then, the energy carried by the P- and S-waves is
radually absorbed in the PMLlayers.Around approximately 3 s the
-wave, which is slower, reaches the farthest edge of the grid and
hould then theoretically completely leave the medium, which re-
ults in a steep decay of total energy. After approximately 3 s, theo-
etically there should remain no energy in the medium because both
he P- and S-waves have left the main domain.All the energy that re-

ains is therefore spurious and constitutes a good measurement of
he efficiency of the absorbing technique used. In the case of PML, at

s there remains a total energy of 235.12 J, whereas in the case of C-
ML there remains a total of 3.83�10−2 J, i.e., 6139 times smaller.
his illustrates the efficiency of the C-PML technique, including at
b

ased on the modal approach of Hagstrom �2003� and Appelö and
reiss �2006�, on new models such as that of Rahmouni �2004�, or
n ideas similar to that used to make the PML stable in aeroacoustics
Abarbanel et al., 1999; Hu, 2001; Diaz and Joly, 2006�.

A future development could be to replace the Dirichlet boundary
onditions implemented at the top of the PML with a paraxial ab-
orbing boundary condition to further improve the numerical effi-
iency of the discrete PML, as done in the case of Maxwell’s equa-
ions for instance by Collino and Monk �1998a� and Fontes �2006�,
ho used a Silver-Müller condition instead of a Dirichlet condition.
The source code of our finite-difference program SEISMIC�

PML is freely available under CeCILL license �a French equiva-
ent of GNU GPL� from www.univ-pau.fr/~dkomati1.
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igure 8. To study the stability of the C-PML model at longer times,
e make the experiment of Figures 3 and 7 last for 100,000 time

teps instead of 2500. Total energy decreases continuously and we
o not observe instabilities developing on this semilogarithmic plot
a�, which means that the discrete C-PML model is stable up to
60 s. By looking at a close-up on the second part of the curve �b�,
pproximately between times t = 80 s and t = 160 s one can notice
iny oscillations that are because of the fact that total energy is so
mall that we start to see the effect of roundoff of floating-point num-
razing incidence.
 ers of the computer.
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CONCLUSIONS

We improved the behavior of the PML at grazing incidence for the
ifferential seismic wave equation based on an unsplit convolutional
pproach. This improved PMLcan be useful, for instance, in the case
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igure 9. Snapshots at time t = 20 �s, t = 40 �s, t = 60 �s, and t =
ight� of the vertical component of the 2D velocity vector for two anis
nd bottom� with C-PML conditions implemented on the four edges
n infinite medium. We represent the component in red �positive� o
ach grid point when it has an amplitude higher than a threshold of 1
nd the normalized value is raised to the power 0.30 to enhance sm
ould otherwise not be clearly visible. The orange cross indicates the

ical force source and the four orange vertical and horizontal lines rep
f each PML. One can observe that the classical patterns in such a
amely the quasi-pressure �qP� wave and the quasi-shear �qS� wav
orbed because no significant spurious waves are reflected off the bou
umerical instabilities appear.
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Figure 10. Snapshots in the case of two anisotropic materials for whi
intrinsically unstable mathematically before discretization �Bécache
tal of apatite �top� and zinc �bottom� with C-PML conditions imple
edges of the grid to mimic an infinite medium. The vertical compone
vector is represented at time t = 25 �s, t = 40 �s, t = 50 �s, and t =
right for apatite and at time t = 35 �s, t = 60 �s, t = 85 �s, and t =
right for zinc. We represent the component in red �positive� or blue �n
point when it has an amplitude higher than a threshold of 1% of the
normalized value is raised to the power 0.30 to enhance small amplit
erwise not be clearly visible. The orange cross indicates the position
source and the four orange vertical and horizontal lines represent th
PML. Strong instabilities develop in the PML when the slowest wa
with its cuspidal triangles, penetrates in the layer, and the simulatio
�right�.
of thin mesh slices, in the case of sources located
close to the edge of the mesh, and/or in the case of
receivers located at very large offset, i.e., rather
common situations that are of interest for instance
for oil industry simulations. The cost of the im-
proved PML in terms of memory storage is simi-
lar to that of the classical PML.

We demonstrated the efficiency of this im-
proved C-PML based on numerical benchmarks
using a finite-difference method on a thin mesh
slice for an isotropic material. We showed that re-
sults are significantly improved compared with
the classical PML technique.

We did not change the basic idea behind the
PML and, therefore, found the same limitations
as with the classical PML for some anisotropic
materials for which the mathematical PMLmodel
has intrinsic instabilities before discretization.
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