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Abstract—In this article, we consider hybrid architectures
that consist of standard CPU cores associated with acceler-
ators (such as GPUs). These architectures are increasingly
employed in large computing centers. We develop a strategy
designed to deal with hybrid computing architectures from
the computing performance and programmability points of
view. We focus on hybrid computing clusters that consist
of a potentially high number of standard CPU cores com-
bined with some accelerators. Although such hardware is
increasingly being used, because of related programming
difficulties, only a small number of large applications use
all the computing resources of such hybrid systems (i.e. both
CPU cores and accelerators).

To allow large applications to use both CPU cores and
accelerators, we introduce SGPU 2, a runtime system that
offers a programming model designed to express the fact
that a computation can be performed on both CPU cores
and accelerators. We first show how SGPU 2 manages the
different computing resources of a hybrid architecture and
how it can be used with a classical existing seismic wave
propagation code; we then use this simulation code to
benchmark SGPU 2.

Keywords-Hybrid architecture, GPU computing, High per-
formance computing

I. I NTRODUCTION

The multicore concept has been applied with success
to Graphics Processing Unit (GPU) processors. These
kinds of processors contain hundreds of cores and were
initially designed for video games or high performance 3D
calculations. Seeing that GPUs can reach a single precision
performance peak of 1 teraflops, and double precision
peak of a half teraflops (for instance on the NVIDIA
FERMI architecture) with a high memory bandwidth, it
is particularly interesting to use the characteristics of such
GPUs for general purpose calculations (GPGPU, General-
Purpose computation on Graphics Processing Units). A
GPGPU system is built with a standard CPU associated
with one or more GPUs. Such a system that combines
CPUs and GPUs is called a “hybrid system”.

One faces several difficulties when developing software
for hybrid systems. First, many programming environ-
ments exist to develop programs on GPUs (ATI Stream,
NVIDIA CUDA, OpenCL), but these environments make
development for GPUs very different from classic ones
on CPUs; reaching GPU peak performance is challenging.

Second, the GPU code must be integrated with a low-level
software stack (MPI, OPENMP, etc.); and finally it has
to be accessible by the existing code.

In this article, we focus on clusters consisting of hybrid
nodes. To use this kind of hardware efficiently, one can
consider several approaches. We focus on strategies that
use both CPU cores and GPUs on a given machine. This
approach can be difficult because programmers must first
determine which computations can be executed concur-
rently on both CPU cores and GPUs. Secondly, they have
to implement the computations. Finally, because GPUs and
CPU cores do not have the same calculation power, the
right calculation amount assigned to the computing units
must be carefully determined in order to have good load
balancing between CPU cores and GPUs.

To address these issues, we introduce a software run-
time called SGPU 2 that offers programmers a way of
expressing a computation that can be performed on both
CPU cores and accelerators (such as GPUs). SGPU 2
also manages the execution in order to have good load
balancing between CPU cores and accelerators. We have
carefully designed SGPU 2 to be fully compatible with
FORTRAN or C based MPI programs in order for it to be
usable in large scientific simulations codes.

We will first summarize previous works on execution
models for hybrid system. We will then describe the
SGPU 2 system and state the work carried out to port the
classical seismic wave propagation code SPECFEM3D to
SGPU 2. Finally we will show some experimental results.

II. RELATED WORK ON HYBRID CLUSTER USE

The current trend in large computing centers is to install
hybrid clusters based on general processor architecture and
accelerators. The best known example is the Tianhe-1A
(Intel processors + NVIDIA Fermi accelerators) machine,
currently ranked second of the TOP5001 with 2.5 PFlops
in June 2011.

A. Technological context

A hybrid computing cluster with GPUs is a cluster in
which nodes are hybrid i.e. they are equipped with one or
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more GPUs. Typically, on a current hybrid cluster node,
there are six or twelve standard CPU cores (Intel Xeon or
AMD Opteron) associated with one or two GPUs.

Currently, using a GPU based cluster requires two kinds
of communications: firstly, communication between nodes,
set up through a high performance network interconnect
such as Infiniband, and secondly, data transfers between
the main memory and the GPU memory. Generally, appli-
cations initiate node-to-node communications via an MPI
library and CPU to GPU transfers via a specific function
call.

B. Strategies for using hybrid architectures

We analyze three main approaches to use hybrid archi-
tectures:

• Approach 1: GPUs are only used to execute kernels,
which is the most straightforward approach.

• Approach 2: Some kernels are executed on the GPUs
and some on CPU cores.

• Approach 3: Kernels are split into two sub-kernels
intended to be executed simultaneously on GPUs and
CPU cores. Our software library SGPU 2 is based on
this approach.

In the two next sections, we study some examples of
execution supports designed to use GPUs, and we then
describe some scientific applications exploiting hybrid
architectures.

C. Software stacks designed to deal with hybrid architec-
tures

In this section we present several software environments
that deal with hybrid architectures programming. We clas-
sify these environments into two categories.

1) Environments that only manage the accelerators:
Each hardware manufacturer provides software environ-
ments to address its accelerators. For the CELL hybrid
processor, IBM provides several software packages to use
it efficiently [1]. GPUs also have their programming en-
vironments, such as CUDA [2] for NVIDIA based GPUs.
Because these environments only deal with GPUs, they
are well suited for the GPU usage depicted in approach 1.
However, with efforts by the programmers, they can also
be used for approaches 2 and 3.

2) Environments that manage CPU cores and accel-
erators: In this category, it is important to distinguish
between software packages that provide scheduling to
optimize the load balancing between both CPU cores and
GPUs, and software packages without scheduling.

Without advanced scheduling:Companies such as
CAPS Enterprise with HMPP [3], or PGI [4] provide
solutions for automatically translating an existing CPU
code (Fortran, C. . . ) into an equivalent GPU code. With
these tools, it can be easier to port existing programs on
GPUs. We can also cite OpenCL [5] in this category. A
program written in OpenCL should be executable on GPUs
from AMD and NVIDIA and also on multicore CPUs.
However, because the issue of computing simultaneously
on CPU cores and GPUs efficiently is not addressed, these
tools are generally used for approach 1.

With advanced scheduling:Many executive supports
provide efficient scheduling for hybrid architectures. Many
of them use a history-based time estimator designed to
find the computing efficiency of GPUs and CPU cores.
We can cite StarPU [6], a runtime system designed to
efficiently schedule tasks on CPU cores and accelerators
(GPU, Cell). The Harmony [7] runtime system provides
a way of automatically extracting parallelism based on a
speculative execution. StarPU and Harmony are designed
to deal with the method depicted in approach 2. For an
example of a runtime based on approach 3 we can cite
Qilin [8], which manages kernels split into both a CPU
part and a GPU part. To use Qilin, a problem has to be
expressed with a CPU part (Intel TBB) and a GPU part
(written in CUDA).

D. Hybrid applications

A significant amount of research has been devoted to
analyzing how scientific applications need to be modified
to be able to compute on GPUs. For instance, BigDFT
[9] is an ab-initio simulation code built around the MPI
library. It has been adapted to be able to use GPUs
by using CUDA [10], and more recently OpenCL. As
designed, when GPUs work, CPU cores are generally idle.
SPECFEM3D [11], a seismic wave propagation simulation
code, currently uses the same approach. The computing
intensive part of the code is deported on the GPU. While
GPUs compute, SPECFEM3D performs non blocking MPI
communications simultaneously in order to overlap their
cost. We can cite other applications [12], [13] for which
the problem of simultaneously computing on both CPU
cores and GPUs is not taken into consideration.

On the contrary, few large applications try to use
the power of all hardware resources. DLPOLY [14], a
dynamic molecular application, can split a computation
between CPU and GPU. DLPOLY can automatically
compute the right amount of data to send to GPUs
and CPUs based on a calibration phase. However the
implementation of the strategy is directly linked of using
particular software, the authors do not provide ways to use
it elsewhere. DLPOLY uses a hybrid computing strategy
based on approach 3.

As we have recalled, a large number of codes only use
CUDA or OpenCL to address GPU. Advanced runtime
systems such as Qilin or StarPU seem to be difficult
to build in large MPI applications. Consequently, with
SGPU 2, our goal is to provide a general programming
model, based on approach 3, that is usable for a large num-
ber of MPI based scientific applications in order to manage
the complexity of hybrid computing programming.

III. T HE SGPU 2RUNTIME SYSTEM

In hybrid architectures, the major challenge is to use
all the computing resources efficiently. Because central
CPU cores and accelerators are powerful, trying to use
both should be the goal. However, accelerator power and
CPU core power are different, depending on the types of
computation and hardware. In a given hardware, some
computations can be 10 times faster on GPUs than on
CPU cores, whereas other kinds of computation might
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Figure 1: The SGPU 2 programming model.

only be twice as fast [15]. In SGPU 2 we thus address the
problem of splitting a computation between CPU cores and
accelerators by processing computations on both CPU and
accelerators. Consequently, many data transfers have to be
performed: transfers from the main memory to accelerators
at the beginning of a computation, and then transfers from
the accelerators to the main memory at the end of the
calculation.

A. The SGPU 2 programming model

The SGPU 2 programming model is based on the classi-
cal process/thread organization found in a large number of
operating systems. In classical applications, a process can
create some threads to parallelize its execution. We add to
this model the notion of “accelerator threads”: a process
can create some CPU threads and some “accelerator
threads” to parallelize an execution between CPU cores
and accelerators. SGPU 2 defines two thread types:

• CPU threads, which are standard POSIX threads or
OpenMP parallel sections holding code executable on
CPU cores.

• Accelerator threads, which are threads defined by
SGPU 2. Their programming interface is similar to
Posix threads. They hold code executable on accel-
erators and can perform data transfers.

1) Thread sets:SGPU 2 threads are organized in collec-
tions calledthread sets. A thread set can hold either a fixed
number of threads, or a variable number of threads. In any
case, when a thread set is created, it has to be tagged with
the minimum(threadsmin) and maximum(threadsmax)
numbers of computing resources to allocate when the
thread set is executed. In other words,threadsmin and
threadsmax correspond to the minimum and maximum
hardware resources usable by a given thread set. Figure 1
shows a process that creates a CPU thread set with
threadsmin = 2, threadsmax = 8 and a GPU thread set
with threadsmin = 1, threadsmax = 6.

2) Hybrid computations:To allow for hybrid computa-
tions with SGPU 2, the idea is to parallelize a computation
with a set of CPU threads and a set of accelerator threads.
Parallelization can be set up by splitting data among CPU
and accelerator memory or by distributing threads across
CPU cores and accelerators. Because we do not have ways

of automatically determining how to parallelize a given
computation, SGPU 2 needs to be guided by programmers.

Consequently, a function designed to split computations,
called a split function, has to be provided. In our pro-
gramming model, thesplit functioncan be viewed as an
operator designed to set up the CPU memory space and
the accelerators memory space in order to prepare them
for a hybrid computation. Thus, this function is the place
to split data computation and initiate CPU to accelerator
data transfers. Symmetrically a function designed to merge
computation from accelerator threads and CPU threads
must be provided. This function, called amerge function,
can perform accelerator to CPU transfers. Both split and
merge functions can be threaded to address more than one
accelerator.

However, the problem of providing the right amount
of calculations to the CPU threads and to the accelerator
threads remains in order to balance the load between CPU
cores and accelerators. The solution that we implement is
for SGPU 2 to use a history-based time estimator. Every
time a thread set is launched, SGPU 2 tracks its execution
configuration and stores it in a database. A so-called
execution configuration holds execution time, the size of
the data processed and the number of threads allocated
to the thread set. This strategy is efficient for iterative
programs, when the same thread set is used many times
with different data sizes. To estimate the execution time
of an unknown execution configuration we have used an
analytical regression algorithm whose implementation can
be found in [16]. This strategy is similar to those employed
by Qilin [8], Harmony [7] or StarPU [6]. Once the execu-
tion time of a thread set is known, SGPU 2 can compute
how many computations it needs to send to the CPU
cores and to the accelerators. This distribution is supplied
to both thesplit and merge functions. The programmer
needs to write a code that takes into consideration the
distribution provided to these functions in order to send
the right amount of computations to both CPU cores and
accelerators.

3) Thread sets submission:To submit GPU or accel-
erator computations, corresponding thread sets must be
submitted to SGPU 2. For hybrid computations, one CPU
thread set, one GPU thread set and the split and merge
functions must be submitted. When computations are
submitted, the execution is asynchronous from the point
of view of the programmer. SGPU 2 provides functions
designed to wait for a computation to ensure that an
execution is finished.

B. Execution model

In the previous section we described the notion of thread
sets, which is the basic scheduling unit in SGPU 2. A
thread set that contains CPU threads is called a CPU thread
set and labeledTSCPU in this section. An accelerator
thread set is labeledTSAccel.

1) Thread scheduling:SGPU 2 schedules thread sets
to free resources. Figure 1 shows an example with 8 CPU
cores and 2 GPUs to be used with SGPU 2.

The scheduler is built around three queues in which
thread sets are submitted:



• One “CPU queue” that handles calculations that use
only the CPU cores (CPU thread set)

• One “accelerator queue” that handles calculations that
use only the accelerators (accelerator thread sets)

• One “hybrid queue” that handles hybrid calculations
(accelerator thread set and CPU thread set plus split
and merge functions)

Procedure 1 getRes: find free resources

Input: resource object (manage free and busy computing
resources) and one thread setTS

Output: resources allocatable for the thread set
n← max(resources.free, TS.max)
if n ≤ TS.min then

avail resources← 0
else

avail resources← n
end if

Procedure 2 thread set scheduling

Input: CPU queue, Accel queue andHybrid queue
Output: a thread set scheduling

loop
if CPU queue.not empty then

TSCPU ← bottom of the CPU queue
getRes(TSCPU , avail resources)
if avail resources 6= 0 then
{allocateavail resources CPU cores}
{exec thread set}

end if
end if
if Accel queue.not empty then
{. . . Like to CPU processing. . .}

end if
if Hybrid queue.not empty then
Hyb elem← bottom of the Hybrid queue
getRes(Hyb elem.TSCPU , avail resourcesCPU )
getRes(Hyb elem.TSAccel, avail resourcesAccel)
if avail resourcesCPU+avail resourcesaccel 6=
0 then

if avail resourcesCPU 6= 0 then
repartition← 0%

else if avail resourcesAccel 6= 0 then
repartition← 100%

else
repartition←computeRep(avail resourcesCPU ,
avail resourcesAccel, Hyb elem.id)

end if
{allocateavail resourcesCPU CPU cores}
{allocateavail resourcesAccel accelerators}
{exec cut function(repartition)}
{exec both CPU and GPU thread sets}
{exec mergefunction(repartition)}

end if
end if

end loop

To schedule the thread sets submitted, SGPU 2 tries to

allocate a number of resources closest to thethreadsmax

provided at the thread set definition. As an example, in
Figure 1, SGPU 2 creates three CPU threads bound to
three CPU cores (we assume there are only three free CPU
cores). This policy is shown in Procedure 1.

Global scheduling is depicted in Procedure 2: when a
thread set is submitted, one of the three queues is filled
up. Each queue is successively analyzed to find if there
are free resources on which thread sets can be executed.
For the case of the hybrid queue, the time estimator is
activated. Its role is to determine how many computations
the CPU side and the GPU side have to treat in order to
finish at the same time. Threads within a thread set are
scheduled by the operating system in the case of a CPU
thread. Conversely, GPU threads are directly scheduled by
SGPU 2 on allocated accelerators.

C. Software architecture

SGPU 2 consists of a software library and a process
running in each cluster node. Programs can perform MPI
operations without changes and submit work to SGPU 2
at any time.

The SGPU 2 process interacts with the application
through POSIX shared memory. CUDA needs to have
pinned memory to perform asynchronous data transfers
between CPU and GPU. To pin a region of POSIX
shared memory, we use a CUDA 4.0 function called
cudaHostRegister.

IV. U SING SGPU 2IN A SCIENTIFIC APPLICATION

SGPU 2 is designed to be used with large MPI applica-
tions. Nevertheless, the split and merge abstractions can
be difficult to implement for some algorithms. Indeed, the
computations have to be split between CPU cores and
accelerators and problems that manage complex data (such
as complex operations on a graph) can be very difficult to
split and merge.

In this article, we have chosen to use a scientific code in
which the main compute intensive part is well adapted to
be split on both CPU cores and accelerators. Let us show
how we have successfully used SGPU 2 in the context of
that large existing MPI application in geophysics.

A. SPECFEM3D description

SPECFEM3D [11] is a seismic wave propagation sim-
ulation code based on the spectral-element method. It can
simulate seismic wave propagation in the Earth at very
high resolution. The high level of accuracy reached implies
that amounts of data handled as well as computations can
be very large. Computations are parallelized with MPI,
thus, SPECFEM3D is suitable for large computer clusters.

1) GPU computations in SPECFEM3D:Details about
the main principles behind porting SPECFEM3D to GPUs
can be found in [17]. In what follows we focus on the main
compute intensive part of the code, which consists of a
loop that represents a time iteration algorithm. This loop
consists of three parts: parts 1 and 3 contain a CUDA
kernel while part 2 contains a succession ofn calls to
the same CUDA kernel (n depends on the numerical
mesh used and is generally between 15 and 30). Data
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Figure 2: SGPU 2 port: both CPU cores and GPUs are
used, extra data transfers have to be performed to update
both CPU and GPU memories. After each dotted line,
CPU and GPU memories should contain exactly the same
data.

dependencies require that parts 1, 2 and 3 be executed
serially, and alln calls to the kernel from part 2 have also
to be done serially.

B. Porting SPECFEM3D to SGPU 2

Figure 2 depicts how we have ported SPECFEM3D to
SGPU 2. To use SGPU 2, the most important work to do is
to decide how to split computations between CPU cores
and GPUs. Because CPU cores and GPUs process only
part of a given computation, extra data transfers must be
implemented to update the different memories with the
updated data.

After parts 1, 2 and 3, CPU and GPU memories must
hold exactly the same data, as depicted by dotted lines
in Figure 2. Because computations are split across CPU
cores and GPUs, extra data transfers must be performed in
both CPU to GPU and GPU to CPU directions to update
the main memory and the GPUs memory.

1) Parts 1 and 3 in SGPU 2 :For parts 1 and 3, which
consist of very simple computations (basically, a sum
of two large vectors multiplied by constant coefficients),
splitting the computation in two parts is very costly due to
data transfers to update memories. Consequently, we have
chosen to duplicate parts 1 and 3 on both GPU and CPU
to avoid extra data transfers. The CPU implementation of
parts 1 and 3 is parallelized with OpenMP.

2) Part 2 in SGPU 2: For the succession of ker-
nel 2 1. . . n calls, which is the most intensive part of the
loop, hybriding the execution is a crucial step. Each kernel
reads and writes non-consecutive elements in memory,
consequently, it is very difficult to split data. Thus, we
prefer to split thecomputations. This means that we
simultaneously executek kernels on the CPU and(n−k)
kernels on the GPU, which is possible because CPU
memory and GPU memory are separated.

Figure 3 depicts two possible implementations of part 2:
contrary to parts 1 and 3, hybrid computations are used,
therefore both split and merge functions are mandatory.
For the CPU thread set, we have kept the original serial
loop of the SPECFEM3D code. Nevertheless we have
parallelized the implementation of kernel2 with OpenMP
in order to use more than one CPU core. Thus, a CPU
thread set that allocates a variable number of CPU core is
created; one can choose the number of threads to create
for each thread set (labeled with a “x” in Figure 3). The
CPU thread set holds a loop that executes thek kernels
sequentially. For the GPU side, 1 GPU thread is created
by the thread set, which allocates one GPU. Creating more
than one MPI task then allows one to address a multi-GPU
system.

3) Updating CPUs and GPUs memory:To deal with
the extra data transfers induced by memory updates, we
present the two strategies (calledS1 and S2) depicted
in Figure 3. Let us consider that the kernel2 1. . . n
succession modifies an array oft bytes. In theS1 strategy
(Figure 3a), when both CPU and GPU threads finish their
computations, a data transfer oft bytes is performed
from the GPU memory to the CPU memory by the
merge function. The main memory now contains both
GPU and CPU contributions. A merge between these two
contributions must be performed; it consists of a sum of
the two contributions. Finally, the merged data (t bytes)
must be transferred to the GPU memory. After these two
transfers, both GPU memory and CPU memory have up-
to-date data, so part 3 can be executed.

The implementation of this strategy is very simple but
the necessity to transfer2t bytes is a major drawback.
To reduce the cost of data transfers, we thus present the
S2 strategy based on overlapping between computations
and data transfers (Figure 3b). We have implemented a
function f ker2update that provides, for each kernel2 k
call, a buffer in which there is exactly the data updated
by this kernel call.f ker2update selects non contiguous
data and packs them in a buffer. This function selects
only the data not modified by the next kernels to be
called, thus, we can transfer data and simultaneously
compute the next kernels: issues such as read-after-write
are totally avoided. After each kernel, the GPU thread
sends the updated memory (by a call tof ker2update)
to the CPU memory (transfer oft/n bytes on average).
Simultaneously, the second kernel can start its execution:
kernel 2 k transfer and kernel2 k+1 computation are
overlapped. This overlapping is automatically managed by
SGPU 2 without any intervention from the programmer.
Symmetrically, on the CPU side, after each kernel execu-
tion, f ker2update is called and the buffer is sent to the
GPU memory, resulting int/n bytes for each transfer on
average. Consequently, the merge functionf ker2merge

does not perform any data transfer: it only merges the
GPU and CPU contributions. With this approach, we have
n data transfers but the total size of these transfers is equal
to the size of one transfer presented in the first strategy
(n. t

n
= t bytes). Thus, the total amount of data transferred

is reduced by a factor of two.



(a) S1 strategy: two data transfers are performed at
the end of the CPU and GPU computations. The
merge function is simple but large data transfers are
necessary.

(b) S2 strategy: each thread performs a partial data transfer
to reduce the total amount of transfers and to overlap it with
computations. The merge function is then less straightforward.

Figure 3: Two possible strategies for performing memory
updates.

There are several advantages to using this approach:
overlapping of the transfers and getting smaller total
size. However,f ker2merge and fupdate are non-trivial
functions to write. On the GPU, reading non contiguous
data is not optimal. On the CPU, data manipulations can
lead to many cache misses. Thus, execution time of these
functions may take a long time to process and reduce the
gain obtained by the memory transfers optimization.

We have checked that theS1 andS2 strategies produce
correct numerical results by comparing them to the output
of the original pure MPI version of the SPECFEM3D
code. As expected, the combination of CPU and GPU
computations does not affect the numerical results.

V. PERFORMANCE EVALUATION

In this section, we want to evaluate the advantage of
hybrid computations, i.e. simultaneously using the com-
puting power of CPU cores and GPUs for computations.
To do this, we perform several experiments consisting of
varying the amount of calculations executed by the CPU
cores and by the GPUs. After describing the experiments
performed, we present the performance level of theS1 and
S2 strategies and analyze the weight of data transfers and

(a) Performance ofS1 strategy. (b) Performance ofS2 strategy.

Figure 4: Performance level ofS1 andS2 strategies for 5
and 10 threads when the number of kernels processed by
the CPU increases.

merge operations. We complete this section by a scalability
comparison between our two hybrid implementations and
the original SPECFEM3D pure GPU code on a hybrid
cluster described below.

A. Experimental context

Experiments are carried out on a hybrid cluster consist-
ing of 4 nodes with 24 GB of memory and two Intel Xeon
X5650 processors operating at 2.5 GHz. Each processor
has 6 cores and each node is connected to NVIDIA
TESLA T10 GPUs with 4 GB of memory each. Nodes
are connected by an Infiniband DDR network.

In this section, we use a mesh for SPECFEM3D that
can be computed with 2, 4 or 8 MPI tasks.

B. Description of the experiments

We vary the distribution of kernel2 execution between
the CPU cores and the GPU. In our system, we have a
total of 25 kernel2 calls, so we first launch one call on
the CPU cores and 24 on the GPU, then two on CPU cores
and 23 on the GPU and so on until reaching 24 on the
CPU cores and one on the GPU. To evaluate the influence
of the CPU computing power, we first run the experiments
on four CPU cores (i.e. creating two threads per MPI task)
and then on ten CPU cores (i.e. creating five threads per
MPI task). The same experiments are performed for the
S1 andS2 strategies. For these experiments, we use only
one node. Because there are two NUMA (Non Uniform
Memory Access) banks per node on our machine, we have
chosen to launch two MPI tasks, each of them bound
to one NUMA bank. Consequently, the created threads
process local data only and we avoid remote data transfers
from one NUMA bank to another. Each thread is bound
to one CPU core.

C. Performance of theS1 andS2 strategies

Results are depicted in Figure 4; the small error bars
show a very stable execution time. Values in theX axis



S1 S2
Transfers (s) 5.23 2.85
Merge operations (s) 0.65 6.52

Table I: Memory transfers and merge operations costs for
the bestS1 andS2 configurations (10 threads, 9 kernels
on the CPU).

correspond to the number of kernel2 executions per-
formed on the CPU cores. For each CPU/GPU distribution
the time to perform 100 time steps is shown on theY axis.
In Figures 4a and 4b, both curves represent the execution
times when two different numbers of CPU cores are used.
When ten threads are used the CPU computing power is
the highest. With four threads, the computing power is
reduced.

The different curves have basically three phases:
Phase 1 (p1) GPU computations are dominant
and take more time than CPU computations. Thus,
switching kernel calls from GPU to CPU decreases
the execution time.
Phase 2 (p2)is a transition phase, CPU computations
begin to take more time than GPU computations.
Execution time increases dramatically.
Phase 3 (p3)CPU computations are now dominant
and conversely to phase 1, switching kernel calls from
GPU to CPU increases the execution time.

Because the GPU computations are dominant in phase
1, the same execution time is achieved with ten or four
threads. Nevertheless, with ten threads, phase 1 stops when
nine kernels are performed on the CPU while it stops
for eight kernels with four threads. Adding CPU power
increases phase 1 and thus increases global performance
for both strategies. As expected, because phase 2 and 3
are dominated by CPU computations, the execution time
is smaller when a large number of threads is used for the
CPU computations.

D. Memory transfers and merge operations

The values represented in Figures 4a and 4b include the
data transfers and merge operations. A detailed analysis of
the execution ofS1 andS2 allows us to compute the cost
of the data transfers and merge operations.

Table I shows the cost of data transfers and merge
operations for the bestS1 and S2 configurations, i.e.
with nine kernels calls on the CPU and ten threads. For
S1, the large amount of data transferred and the simple
code for the merge operation lead to a data transfer time
considerably higher than for the merge time. ForS2, the
many small data transfers designed to overlap memory
updates allow one to reduce the cost of memory transfers
by a factor of 1.8 compared toS1. Nevertheless, the
complexity of the code designed to merge the GPU and
CPU data very significantly increases the merge time.

E. Scalability on a hybrid cluster

We now increase the number of nodes in order to ana-
lyze the scalability of the SGPU 2 port of SPECFEM3D.
We use a fixed problem size per MPI task (weak scalabil-
ity). In each node we launch two MPI tasks managed by

Figure 5: Scalability of the original SPECFEM3D code
and S1 and S2 strategies of SGPU 2. On each node, there
are two MPI tasks.

SGPU 2. In Figure 5 we show only the best performance
levels achieved for bothS1 andS2 (i.e. with nine kernel
executions on the CPU and ten OpenMP threads). Scala-
bility is very good, as for the original SPECFEM3D code.
AlthoughS2 reduces the cost of data transfers, the cost of
the merge operations leads to a total execution time longer
thanS1.

F. Comparison of both strategies

StrategyS1 is a relatively non-intrusive solution: source
code modification is limited and consists of two data
transfers and basic operations on arrays. Nevertheless, the
two large data transfers performed after each iteration
are costly. We have thus suggested another strategy,S2,
that requires more extensive changes in the code, with
significant algorithm modifications.

StrategiesS1 andS2 depict the two main approaches to
handle memory updates in SGPU 2. We can classify these
approaches into two categories:

• The first category contains solutions to minimize
the amount of extra code to be added in applica-
tions. Consequently, operations designed to select
the updated data to transfer and operations designed
to merge both accelerator and CPU contributions
should be very simple. In a complex code, these
solutions can imply selecting a very large memory
zone, and thus transferring unmodified data. Strategy
S1 belongs to this category and implies transferring
entire arrays while only a part of these arrays has
been updated.

• The second category comprises solutions designed
to reduce data transfers; partial data updated by a
computation must be found, transferred and merged.
This implies adding extra code to the application
in order to select, transfer and merge an amount of
memory closest to that modified by the application.
The additional code can take a long time to be pro-
cessed and is more intrusive in applications. Strategy
S2 belongs to this category and a relatively complex
code must be written in order to select data to transfer
and to merge them.

Choosing a strategy from the first or the second category
mainly depends of the application in which SGPU 2 is



used; the size of data updated and transferred as well as
the complexity of the code to add to deal with memory
updates must be considered.

VI. CONCLUSIONS AND FUTURE WORK

We have presented SGPU 2, a runtime system designed
to deal with hybrid architectures. A programming model
based on threads allows for a computation to be pro-
cessed on different computing resources (CPU cores and
accelerators). With thread notions for both CPU cores
and accelerators, we can consider multi-core and multi-
accelerator systems. A history-based time estimator is
connected to the SGPU 2 scheduler to balance the load
between CPU cores and accelerators. We have described
how a large existing scientific simulation code called
SPECFEM3D can be ported to SGPU 2 and we have
suggested categorizing the solutions to deal with memory
updates.

Our experiments show that the programming model
provided by SGPU 2 is well adapted to an existing MPI
based scientific application. Furthermore, even with an
application highly optimized for the GPUs, using both
CPU and accelerator computing power has an impact on
the performance level and one can observe an improve-
ment of its total execution time. Nevertheless, operations
designed to update data in the different memories reduce
final performance in our tests.

Novel hardware architectures, such as AMD Fusion, in
which accelerator and CPU memory are shared can help
to reduce the cost of memory update operations. Thus we
plan to evaluate this kind of hardware with SGPU 2 in
future work.

So far we have experimented with the SGPU 2 approach
only in the context of the SPECFEM3D code. We thus
plan to use it for other applications, for instance BIGDFT
[9].
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