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a b s t r a c t

In order to deal with the common trend in size increase of volumetric datasets, in the past few years
research in isosurface extraction has focused on related aspects such as surface simplification and load-
balanced parallel algorithms.
We present a parallel, block-wise extension of the tandem algorithm [Attali D, Cohen-Steiner D,

Edelsbrunner H. Extraction and simplification of iso-surfaces in tandem. In: SGP ’05: Proceedings of
the third Eurographics symposium on Geometry processing. Aire-la-Ville, Switzerland: Eurographics
Association; 2005. p. 139–148], which simplifies on the fly an isosurface being extracted. Our approach
minimizes the overall memory consumption using an adequate block splitting and merging strategy
along with the introduction of a component dumping mechanism that drastically reduces the amount
of memory needed for particular datasets such as those encountered in geophysics. As soon as
detected, surface components are migrated to the disk along with a meta-data index (oriented bounding
box, volume, etc.) that permits further improved exploration scenarios (small component removal or
particularly oriented component selection for instance).
For ease of implementation, we carefully describe a master and worker algorithm architecture that

clearly separates the four required basic tasks. We show several results of our parallel algorithm applied
on a geophysical dataset of size 7000× 1600× 2000.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Surface reconstruction for shape modeling is widely used in a
large variety of fields (medicine, geophysics, etc.). The marching
cubes algorithm, introduced by Lorensen et al. [1], is the most
classical algorithm used for isosurface extraction. Due to the
increasing size of processed datasets and extracted surfaces,
many improvements of the marching cubes have been proposed.
They concern, for instance, ambiguity treatment [2], reduction
of the number of traversed cells [3,4], load balancing in parallel
approaches [5,6] and reduction of the number of generated
triangles [7].
In order to cope with the increasing size of datasets, isosurfaces

might need to be simplified to reduce the number of generated
triangles both for memory storage or more importantly for
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visualization purposes. In a brute-force approach one would
extract the full mesh and simplify it in a second pass [8–10]. The
problem with this method lies in the generation of a first very
large mesh that may not fit in the main memory before further
simplification. In [11], Attali et al. reduce memory requirements
by introducing a tandem algorithm that combines isosurface
extraction and simplification stages in one pass. Their method
drastically reduces the amount of vertices and triangles stored
in memory during extraction, allowing larger datasets to be
processed.
Similarly to how Attali et al. addressed the memory problem

raised by larger datasets, we introduce a parallel, block-wise
extended version of the tandem algorithm to accelerate the
computation of simplified isosurfaces. The dataset is split into
blocks and sent to compute nodes. In each node a local isosurface is
extracted and semi-simplified based on a slightlymodified tandem
algorithm. Then nodes can receive an adjacent semi-simplified
isosurface that will be merged with the local one. This merge
operation ends with a simplification stage with relaxed edge
constraints at their common interface that remove seams between
them. The algorithm finishes when all local semi-isosurfaces have
been merged and simplified. Our splitting/merging strategy forces
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Fig. 1. The kth layer (in red) is the set of vertices, edges and triangles extractedwith
the marching cubes algorithm between cross-sections k− 1 and k. Figure courtesy
of Dominique Attali.

adjacent nodes to be processed together, maintaining memory
consumption as low as possible during the overall isosurface
extraction.
We also introduce an early component dumping mechanism

that frees thememory as soon as independent surface components
have been extracted, simplified and stored to disks along with
meta-data for later high-level exploration. This strategy has proven
to be very useful for particular datasets such as those in geophysics
forwhich the extracted features are numerous but small compared
to the global size of the volume. The meta-data stored along
these disconnected components can be used for filtering purposes
during their visualization, for instance discarding those with too
small volumes or keeping particularly aligned ones. This dumping
mechanism can also be beneficial for noisy datasets or when a
pertinent isovalue is not yet well determined and leads to many
small disconnected components.
In the first part of this articlewe describe the tandemalgorithm.

In the second partwe propose a parallel extension of this algorithm
with dumping of completed objects. The third part presents some
computational experiments.

2. The ‘‘Tandem Algorithm’’

Themain idea of the algorithm of Attali et al. [11] is to alternate
the extraction of a layer (see Fig. 1) and the simplification of the
current overall extracted surface in order to reduce the amount of
occupied memory. Indeed, a global simplification after a complete
extraction would require to store all vertices and triangles, while
a simplification stage during extraction reduces the number of
vertices and triangles at each step.
The tandem algorithm is then a simple loop that iterates over

the cross-sections to implement two operations:

• an ‘‘extraction’’ operation that adds a layer (vertices, edges and
triangles obtained with the marching cubes algorithm between
two subsequent cross-sections) to the current triangulation.
• a ‘‘simplify’’ operation that simplifies the current triangulation.
The last layer added is not simplified so that the next layer can
be appended.

The simplification stage consists in applying the classical edge
collapse algorithm [12]. Each edge collapse operation has a cost
that measures the numerical error it would introduce in the
triangulation. Edge candidates for edge collapse are kept in a
priority queue Q ordered by their cost. To evaluate this cost,
Attali et al. [11] revisited the quadratic metric of Garland and
Heckbert [12] and proposed a quadratic error which is a weighted
sum of a shape measure criterion and a mesh isotropy criterion.
The shape measure is similar to that used in the original edge

contraction algorithm. It measures the deviation introduced by
the collapse operation between the new vertices and the original
surface. The shape measure of a point x is defined by

hc(x) =
1
Wc

∑
t∈Uc

wtd2(x, Pt) =
1
Wc
xTHcx,

where Uc is the patch defined by all the neighboring triangles of
point c . Pt is the plane spanned by the triangle t , wt is its area and
Wc =

∑
t∈Uc wt . Hc is a positive definite matrix. Edge contraction

ab 7→ c leads to Hc = Ha + Hb andWc = Wa +Wb.
The mesh isotropy criterion is introduced in order to prevent

the creation of long and skinny triangles. Considering Sab, the set
of triangles containing the vertices a, b or both in the current
triangulation, the mesh isotropy criterion for point c is defined as
the squared distance of the point to the patch:

gc(x) =
∑
t∈Sab

wt(‖x− t̂‖2 + avg(t)) = xTGcx

where t̂ is the barycenter of the triangle t and avg(t) = 1
12 (‖p‖

2
+

‖q‖2 +‖r‖2)with p, q, r the vectors from t̂ to the vertices of t. The
term gc is normalized by W = 3 × area(Sab)W

1/2
c /E0 in order to

balance its influence with hc in the global cost defined by :

εα(c) =

√
cT
[
(1− α)

Hc
Wc
+ α

Gc
W

]
c

α is called the isotropy parameter, and represents a compromise
between the shape measure criterion and the anisotropy measure
criterion. In practice α is set to 0.4 for a good compromise between
the two criteria.
Formore details about thosemathematical formulations, please

refer to the original article [11].
During edge contraction, the resulting vertex position c is

obtained by minimizing the local error function εα and the final
error value εα(c) is used to order the priority queueQ. In any case,
a candidate cannot be accepted if its shapemeasure, ε0(c), exceeds
a positive constant error threshold E0. The simplify function then
consists in emptying the queue Q by applying consecutive edge
collapses.
Right after the extraction stage, the simplification stage has to

cope with the heavy edge constraints on the last extracted layer.
To prevent the creation of artifacts that these blocked edges would
introduce, an innovative way of scheduling the edge collapse
was proposed, called time lag. The main idea was to delay edge
collapses near the advancing front. The time lag is based on the
rank of a vertex, equal to its coordinate along the extraction
direction (for example z if the cross-sections are taken along the
z-axis). The rank of the front is the maximum rank that has been
extracted. Considering, height(u) = rank(u) and rad(u) = 1 for
new vertices introduced by extraction, the contraction of an edge
ab 7→ c leads to :

height(c) = (height(a)+ height(b))/2
rad(c) = (‖a− b‖ + rad(a)+ rad(b))/2
reach(c) = height(c)+ rad(c).

The contraction of an edge is prevented as long as its reach value is
greater than or equal to the rank of the advancing front. As detailed
in [11], if a and b belong to the last extracted layer, height(c) =
rank(front) and since rad(c) > 0, the contraction of ab would be
prevented. Similarly, if a vertex of ab lies in the front plane, reach(c)
would be greater than the rank of the advancing front.
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Fig. 2. Two partial triangulations constructed without (left) and with (right) the
time lag: the length of the edges gets progressively longer as they proceed further
to the front layer. Figure courtesy of Dominique Attali.

The blocked edges are kept in a priority queue W ordered by
reach value. The function delay adds all edges of the last layer
k in W . An edge is moved from W to Q if its reach value is
lesser than the rank value of the advancing front. The function
activate, described in algorithm 1, moves edges fromW toQ. Fig. 2
illustrates the effect of the time lag near the advancing front.

Procedure activate( k : integer)
While (reach(top(W ))< k) do

add top(W ) inQ;
pop(W );

done
End

Algorithm 1: At the kth layer, the ‘‘activate’’ function fills
up the edge collapse candidates queue Q with previously
delayed edges ofW .

The tandem algorithm can then be written as in algorithm 2. It
takes E0, the maximum shape error allowed, as a parameter.

Procedure tandem( E0 : float)
For k from 1 to number of cross-sections - 1 do
extract(k);
delay(k);
activate(k);
simplify(E0);

end For
activate(∞);
simplify(E0);

End

Algorithm 2: The tandem algorithm

3. Extended tandem algorithm

The tandem algorithm was designed to work on large datasets
but experimental results (a test that we performed on a noisy
dataset of size 1626 × 7028 × 2000) showed us the limited
scalability of this algorithm. On this cube, each extraction on
the advancing fronts generates 1 250 000 triangles (Fig. 3). In
this case, updates of the queues and simplification steps are too
memory consuming. We therefore propose an extension of the
tandemalgorithm to increase its scalability. This extension consists
in dumping parts of the extracted surface and dispatching the
extraction process on subsets of the dataset.
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Fig. 3. Number of triangles generated for each layer of the (1626× 7028× 2000)
dataset. The region with no triangles extracted is due to a hole in the dataset.

Fig. 4. Distribution of extracted components. The finished components are shown
in light gray and growing ones in dark gray. The black arrow indicates the direction
used for extraction.

3.1. Component dumping

Classical out-of-core approaches migrate mesh to disk during
extraction. The generated files are then soups of triangles ordered
by direction extraction. But isosurfaces extraction, especially
in geophysics, generate many disconnected components. Fig. 4
illustrates a usual repartition of geological sets: the finished
components are shown in light gray and components that are
still growing or that are not completely simplified are shown in
dark gray. This distribution of disconnected components allows
us to dump completed surfaces as soon as their simplification is
finished.
The dumping process requires to detect the termination of a

component extraction, but since we use the time lag technique, a
component may be entirely extracted but its simplification may
have been prevented. We therefore need to detect the end of its
extraction as well as the end of its simplification.
To formalize the finalization of a component, we define an

active component γ as the set of vertices defining its shape. We
consider Γ the set of all the active components, Γ = {γi} and
define Vw the set of all the vertices defining edges in the queueW
(all the edges prevented by the time lag technique). A component
is then finalized if it has no more edges to collapse (γ has no more
edges inW ), which can be written as :

γ is finalized ⇔ γ ∩ Vw = ∅.

We define the function save(γ ) that migrates a component to
the disk and the function clear(γ ) that deletes γ in the current
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triangulation. The Dumping function can then be written as in
algorithm 3.

Procedure dumping()
For Each γ in Γ do

If (γ ∩ Vw = ∅) then
save(γ );
clear(γ );

end If
end For

End

Algorithm 3: The ‘‘dumping’’ function

The dumping function is then introduced in the tandem
algorithm (algorithm 4).

Procedure tandem( E0 : float)
For k from 1 to number of cross-sections - 1 do
extract(k);
delay(k);
activate(k);
simplify(E0);
dumping();

end For
activate(∞);
simplify(E0);
dumping();

End

Algorithm 4: The new tandem algorithm with dumping

An intrinsic property of our component-based dumping is that
our generated file is ordered by component. We can then easily
access a subset of components by reading a subset of the generated
file. To optimize access to components in this file (called the raw
data file) we generate an index file (called the index component
file). To enhance the exploration of the extracted surface, meta-
data (such as oriented bounding box, volume, number of vertices
and facets, etc.) are computed for each component and stored
in the index file (Fig. 5). One exploration scenario could be
based on volume filtering such as in [13] in which Pivot et al.
propose a workflow for complex volume seismic interpretation.
They suggest to extract isosurfaces on seismic attributes and to
delete automatically inconsistent small ‘‘bubbles’’ (disconnected
components with very small volumes with respect to other
components). Another useful way of separating components is an
analysis based on the geological depositional direction (azimuthal
direction).

3.2. Parallel algorithm

A good feature of themarching cube is its spatial independence.
Each grid cell can be processed independently of the others and
in any traversal order. We therefore propose to split datasets into
subsets, to extract simplified surfaces in these subsets using the
extended tandem algorithm and to merge them in a final surface.
Our parallel algorithm considers the dataset as a layout of

subsets on which a slightly modified tandem algorithm is first
applied. In fact, during the continuous simplification of the
extracted triangulations, edge collapse operations are not applied
Fig. 5. File organization. The index file (left) refers to the raw data file (right).

Fig. 6. Binary partitioning. The dataset is recursively split perpendicularly to its
longest direction until it goes down a given size threshold.

near boundaries in order to enable a later merge with adjacent
blocks of isosurfaces. Blocks of semi-simplified isosurfaces are then
aggregated as they become available and aggregates get simplified
again to remove seams in the merged triangulation.
Dealing with semi-simplified isosurface blocks must imply

a high priority in merging them as soon as possible to keep
the overall number of triangle as low as possible. The splitting
strategy and the subset traversal order must be designed with this
requirement in mind.
A classical dataset subdivision as a regular grid of blocks seems

natural for this purpose, but it becomes tricky to choose along time
the next good block to process and with which one it is better to
merge. To address this aspect we have chosen to complement this
grid with an implicit hierarchical organization scheme that allows
a fast selection of adjacent blocks without traversing the whole
grid of blocks. Process andmerge orders are directed thanks to this
hierarchical layout.

Splitting phase. We propose a hierarchical scheme for surface
extraction. As in [14], the dataset is split recursively into two
parts perpendicularly to its longest direction as long as the
sub-block size is greater than a given threshold (Fig. 6). These
successive subdivisions of the dataset implies a binary tree logical
organization (Fig. 7). Isosurface extraction is performed on leaves
of the generated tree and recursively merged to reconstruct the
global surface.
Extraction in leaf nodes is performed using the tandem

algorithm combined with our new dumping approach. The size
of the leaves could then be relatively large since the tandem
algorithmhas beendesigned for this purpose. However our parallel
algorithm is quite independent of this size. In our experiments,
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Fig. 7. Binary partitioning of a dataset (left) and the resulting logical organization as a binary tree (right). Each node of the tree is tagged by a type indicating its position
regarding the cutting plane.
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Fig. 8. Restricted adjacency requirement. Merging operations occur between brother nodes or between a node and its nephews that share a common boundary. Light gray
leaves have already been processed. Darker gray nodes are considered as merged and completely processed.
overall extraction timings do not significantly varywith 1283, 2563
or 5123 leaf block sizes.
In order to avoid refinement dependencies between adjacent

blocks and prevent artifacts due to a bias in shape during
simplification, we extend the time lag notion. As in the original
time lag the radius associated with a point c (result of the collapse
ab 7→ c) is given by
rad(c) = (‖a− b‖ + rad(a)+ rad(b))/2
with rad(x) = 1 if x is an original vertex of the isosurface. The
contraction of edge ab is prevented as long as the sphere centered
on the middle of ab and of radius rad(c) is not totally included in
the block. We show in Fig. 9 how the introduction of the time lag
influences the refinement progression near the boundaries of the
blocks.
Merging phase. In our splitting strategy (binary partitioning), each
node p is split into two children p1 and p2, denoted cp (children of
p). Reciprocally p is the father of p1 and p2 denoted by fp1 and fp2
respectively; p1 is the brother of p2 by bp2 = p1 and reciprocally
bp1 = p2.
Intuitively, a good strategy for block merging should be to

recursively merge brothers, from the leaves up to reaching the
root of the tree. Considering brothers ensures that they share a
large common boundary and that the simplification of the merged
triangulation will remove a significant number of triangles. In
practice isosurface components are not uniformly distributed in
the sub-blocks and therefore extraction time of two brothers could
be drastically different, and merging them implies waiting for the
slower one. To solve this problem we allow the algorithm to only
merge a block with its brother or with one of its nephews if they
have a common boundary.
We thus need to define a restricted adjacency criterion

determining if a sub-block of a brother node has a common
boundary. We consider that a block p can be split along three
different planes (according to its longest direction). We define the
type of a node as the position of the node after the split of its father.
If a node p is split along x, p1 and p2 are denoted respectively left
and right. Similarly, cut along y defines children as up and down,
and cut along z as front and back.
Denoting by � the opposite operator, we have:

left = right and right = left
up = down and down = up
front = back and back = front.
We define tree of root p (Tp) as the set of nodes containing p and its
recursive children. In this tree, ancestry of a node n (Ap,n) is defined
as the set of nodes containing n and its recursive fathers up to p:

Ap,n =
{
n if n = p
n ∪ Ap,fn else.

Considering a block split into p1 and p2, a nephewnodenbelonging
to Tcp2 has a common boundary with p1 if

∀ n′ ∈ Acp2,n, type(n′) 6= type(p1).

If n then fulfills this restricted adjacency requirement it can be
merged with p1. This criterion can efficiently be implemented
via an iterative tree traversal through the successive fathers
while verifying the condition on their types. When two brothers
have been merged, their father node is considered completely
processed.
To understand better these merging requirements, let us

consider Fig. 8. Leaves 1 and 2 are processed and are brother nodes,
they can then be merged; n9 is then considered as completely
processed. Same case for n10 with the leaves 3 and 4. It results
that n9 and n10 can also be merged and that n13 is then completely
processed. n13 cannot be directly merged with n14 because n14 is
not completely processed. However leaf6 can be merged with n13
because it fulfills the requirements on the types of its ancestry
nodes (Acn14 ,leaf6 = {leaf6; n11}): type(leaf6) = down 6= type(n13)
= right and type(n11) = down 6= type(n13) = right. Finally,
leaf7 cannot be merged with n13 because one of its ancestry
nodes (Acn14 ,leaf7 = {leaf7; n12}) does not fulfill the requirement:
type(n12) = right is not different from type(n13) = right. This
last case can be seen in Fig. 8, leaf7 does not have any common
boundary with the dark node n13.
Geometrically, merging two sub-blocks requires first to identify

common points extracted in each block lying on their shared
boundary. Due to potential numerical inaccuracy in vertex
extraction, we cannot identify common points based on a simple
coordinate comparison. Identification is then done by using a
property of the marching cubes algorithm: as a cell edge can have
only one or zero points generated by the algorithm, two points
belonging to common cell edges are identical and then merged.
Once this merging step is finished, one has to simplify the

pasted area with the same error criterion as for the surface
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Fig. 9. On the left we illustrate the effect of the time lag on the refinement at the boundaries of the blocks before simplification. On the right, surfaces have been simplified.
On the top row, only edges that have at least a vertex on a boundary have been kept. On the bottom row, edges have been excluded from simplification using the time lag
method. This shows that applying the time lag method near the boundaries of blocks leads to triangulations of better quality.
extraction E0. As during the extraction step, the contraction of an
edge ab is prevented as long as the sphere centered on the middle
of ab and of radius rad(c) is not totally included in merged blocks.
We show in Fig. 9 the merge of surfaces and the effect of the
time lag on the quality of the resulting surfaces. Finally the last
step of the merge consists in dumping finished components to the
disk.

3.3. Manager/workers implementation

In our application the target parallel machine is a load-balanced
cluster managed by the Platform LSF-HPC software. A typical use of
this parallel machine is to decompose a process into independent
tasks and then let the task scheduler (here LSF-HPC) dispatch tasks
to the distant grid. When a task is finished, the processor used for
this task is freed. The task scheduler can reallocate it for the process
if resources are sufficient for other running processes.
We propose a parallel algorithm adapted to this kind of

architecture that is composed of workers and a worker manager.
Workers are distant processes that have to extract, merge and
dump surfaces or send them to otherworkers. Theworkermanager
is a process, distant or not, that assigns tasks to workers. This
approach and our formalism are adapted to our target parallel
machine (number of allocated processors varies in time) but could
also be used on other parallelmachines. It is alsoworthmentioning
that our algorithm can also be run with no modification with only
one worker. In this case, this worker will process and aggregate
successively all the blocks of the isosurface in the grid.
Workers do not have any consciousness of the tasks they have

already accomplished, the portions of surfaces they currently own
or if any other worker is processing adjacent blocks, the worker
manager does. Workers simply ask and obey the worker manager
that uses the hierarchical structure to quickly find what is the
next best block to extract for a given worker or to what worker
another one should send its aggregate of isosurfaces before its
termination.
A worker is written as an infinite loop that requests tasks from

theworkermanager (algorithm5). This loop endswhen theworker
manager decides so. Tasks are composed of a task type and a
worker id (each worker has an unique id used to send messages).
We distinguish four task types:
• EXTRACT : the worker has to extract a surface from a sub-block
of the dataset. The extraction is performed with the extended
tandem algorithm. Sub-block boundaries, except those that
are common to dataset boundaries, would prevent the edge
collapse in their neighborhood using time lag. The extracted
surface is appended to its current surface.
• SEND: the worker received a worker id, referring to a target
worker. The worker has to send its current mesh to the target
worker that will merge it with its current one. After this send,
the current surface of the worker is emptied.
• MERGE: theworker has tomerge its current surfacewith amesh
sent by another worker. After the merge operation, the new
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current surface is simplified and the finished components are
dumped.
• FINISHED: the worker has to stop. The time life of a worker is
not necessarily equal to the global process duration.

Procedure worker( E0 : float)
finished : boolean;
finished← false;
While ( ¬finished) do

task← get_task();
Switch

task.type=EXTRACT :
tandem(E0);
task.type=SEND:
send_surface(task.target);
task.type=MERGE:
merge_surface(get_surface(), E0);
task.type=FINISHED:
merge_surface(get_surface(), E0);
finished← true;

end Switch
done

End

Algorithm 5: The worker algorithm. Each worker receives at
most four distinct tasks from the worker manager.

The worker manager is a loop that iterates as long as the
global surface has not been totally extracted and recomposed.
The worker manager has a global view of the process and can
dynamically dispatch tasks to workers, which ask for tasks when
they begin or when they finish their last assigned task. In order
to define the worker manager mechanism (algorithm 6), we
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Fig. 12. Anisotropy variation of themesh as a function of the isotropy parameter α.
Thanks to the extension of the time lag concept to the block boundaries, our parallel
algorithm gives as goodmesh qualitymeasurements as with the original sequential
version of the tandem algorithm.

define the following three operations that operate efficiently on
top of the hierarchical organization brought by the recursive
splitting mechanism: has_waiting_surface, has_neighbor_worker
and has_unprocessed_block.
Function has_waiting_surface: if a querying worker has some

waiting surface sent by other workers it returns true, else false.
Function has_neighbor_worker: if there exists a worker that

is dealing with a node that fulfills the restricted adjacency
requirements with the aggregate of surfaces of the querying
worker then it returns the id of this worker, else it returns
false.
Function has_unprocessed_block: the worker manager finds

here the best next block to extract for the queryingworker. Among
the unprocessed blocks, it will first look for one that fulfills the
restricted adjacency requirements with the current aggregate of
surfaces of the querying worker. If no such adjacent block exists
it returns any unprocessed one. If no such block exists it returns
false.
Based on these three functions, the algorithm of the worker

manager (algorithm 6) performs as follows. For each request
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Fig. 13. A typical seismic attribute. (a) Cross-sectional view of a seismic dataset. (b) Cross-sectional view of an attribute computed on the seismic dataset. (c) Superposition
of the attribute (the color palette is saturated at a given threshold) over the seismic data. (d) Global view of the extracted surfaces from the seismic attribute volume.
received by workers, the manager asks first to merge any waiting
surface. If no surface is waiting, it determines if the worker has
a neighbor worker so it can send its aggregate of surfaces. If
not, the manager asks the worker to extract a new unprocessed
block. If no unprocessed block remains it asks the worker to
finish.

Procedure worker_manager()
While ( ¬finished) do

id← get_task_request_id();
If (has_waiting_surface(id)) then
send_task_to_worker(id,MERGE);

else
If (has_neighbor_worker(id) ) then
send_task_to_worker(id, SEND, targetId);

else
If (has_unprocessed_block(blockId))
then
send_task_to_worker(id, EXTRACT, blockId);

else
send_task_to_worker(id, FINISHED);

end If
end If

end If
done

End

Algorithm 6: The worker manager has a global view over
every worker. Depending on their current state, it decides
and sends them what is the next task they have to
accomplish.
3.4. Example of algorithm trace

The purpose of this section is to show how the algorithm
performs on an example. It will help us to illustrate the concepts
introduced in the previous sections.
Fig. 10 shows a possible trace of our algorithm 6 on a dataset

recursively split into eight blocks in the same way as that in Fig. 7.
In this trace we use the notation ‘‘Wi ?→ task argument’’, which
means ‘‘worker number i asks the manager what to do now and the
manager replies with a task to accomplish and its argument ’’. For
the sake of clarity, several states of the dataset are displayed after
groups of few accomplished tasks. This trace is obtainedwith three
workers.

4. Computational experiments

In order to analyze the performance of our algorithm, we focus
on memory consumption during the extraction and on analyzing
the quality of the generated mesh.
Memory consumption. A critical point with the marching cubes
algorithm is the amount of memory needed to store the generated
triangles. Fig. 11 illustrates the comparison between a brute-
force approach, the tandem algorithm and our tandem algorithm
with dumping. Triangles are counted right after processing a
layer k. We see that the tandem algorithm drastically reduces the
number of triangles generated compared to the classical approach.
Our dumping strategy enhances the tandem algorithm by clearly
reducing further the number of triangles.
Mesh quality. Many applications need ‘‘well-shaped’’ triangles
instead of long and skinny ones. A classical evaluation of mesh
quality is to measure the aspect ratio of a triangle t = abc as
ρ(t) =

√
λ2/λ1 where λ1 ≥ λ2 are the greatest eigenvalues of

the inertia matrix of t , defined by:

Mt =
1
3
[(a− t̂)(a− t̂)T + (b− t̂)(b− t̂)T + (c − t̂)(c − t̂)T]



G. Dupuy et al. / Computer-Aided Design 42 (2010) 129–138 137
Fig. 14. Example of a surface generated for a dataset of size 1626× 7028× 2000.
This surface contains 18 111 disconnected components.

with t̂ the centroid of triangle t . ρ(t) = 1 if the triangle t is
equilateral (λ1 = λ2) and ρ(t) = 0 if it is flat (λ2 = 0). As a global
measure of the triangulation K (composed by n triangles), Attali
et al. [11] use ametrics of the anisotropy, also called ‘‘skewness’’ in
the mesh generation field:

anisotropy(K) = 1−
1
n

∑
t

ρ(t)

with 0 ≤ anisotropy(K) ≤ 1 and anisotropy(K) = 0 if all triangles
are equilateral.
Fig. 12 shows anisotropy variation as a function of the isotropy

parameter α for the three approaches: the sequential tandem
algorithm and the parallel algorithm with and without time lag.
We clearly see the effect of the time lag on the quality of the
generated mesh. Parallel extraction generates a mesh with a
quality equivalent to that of the sequential approach. The increase
of anisotropy (α greater than 0.9) is due to the fact that the shape
criterion is no more taken into account in the choice of candidates
for edge collapse and therefore the collapse operation is only
based on triangle shape quality, and proposed points far from the
original surface: most of these candidates are rejected by the error
threshold E0. In practice, the cost function must always take care
of the shape measure and then prevent these degenerated cases: a
value of α equal to 0.4 is a good compromise.
Application to a geophysical example. Seismic cubes are very
common datasets used in hydrocarbon exploration and analysis
of such datasets is very helpful to characterize the depositional
environment. A common tool for seismic analysis is based on
texture analysis and seismic attribute computation. A seismic
attribute highlights specific features of the dataset. For example
Fig. 13 shows an example of the attribute that detects the
chaotic and high-amplitude areas in the seismic dataset. As
such facies could be related to the presence of hydrocarbons,
making an inventory of all these areas is very helpful for
geophysicists. In order to make this inventory, we apply the
followingworkflow: attribute computation, surface extraction and
disconnected component sorting. As the attribute highlights the
interesting parts, by adjusting a thresholdwe extract the 3D shapes
with our proposed approach (Fig. 13).
Thisworkflow is applied to a dataset of size 1626×7028×2000,

i.e. 40 GB. The first interest of our approach is its parallelism:
according to the number of available processors, we reduce the
extraction time (the extraction is performed in 5 min with 56
processors instead of more than three hours for the tandem
algorithm). Fig. 14 shows all the extracted surfaces, and one can
clearly see many small extracted objects that are probably due
Fig. 15. Components extracted on a dataset of size 1626×7028×2000 (see Fig. 14)
and filtered according to their volumes. This surface contains 328 disconnected
components.

to noise in the attribute or due to very small objects. In order
to make a ranking of all these surfaces, we can easily sort them
according to geometrical criteria. Fig. 15 illustrates this sorting
by eliminating the smallest objects. Only 328 components are
kept over the 18 111 in the unfiltered version. This workflow is
helpful to locate such areas and to analyze their distribution and
relation.

5. Conclusion

Due to the increasing size of datasets, the literature on
isosurface extraction has focused in recent years on approaches
that extract simplified surfaces or dump surfaces as soup of
triangles. But none of these approaches propose parallel extraction
with simplification and dumping of disconnected components. Our
component-based dumping approach implies a file organization
allowing interactive exploration of the volume. This organization
could be applied to other surface reconstruction algorithms that
generate many disconnected components. Our parallel processing
based on dataset splitting and time lag extension could also be
beneficial to simplification methods that split their surfaces into
patches.
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