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In many problems of geophysical interest, when try- 
ing t o  describe surfaces,one has t o  deal with data 
tha t  exhibit rapid variations. This occurs for instance 
when describing the  topography of mountain ranges, 
volcanoes, seafloor surfaces (bathymetry maps), is- 
lands, or t he  shape of geological entities, tha t  can 
present large and rapid variations due for instance to 
the presence of faults in the  structure. The  correc,t de- 
scription of such geological surfaces, by a fitting pro- 
cess from a given set of points, is therefore of great 
importance. Usual methods give good results in the 
case of curve fitting, but less accurate results in the 
case of surface fitting. The  new method we propose 
here uses scale transformations (spline under tension), 
and is applied without any particular a priori knowl- 
edge of the  data. We first propose a construction of 
these scale transformations families, and then show 
the  efficiency of this innovative approach by applying 
it to seafloor surfaces around the  Big Island in Hawaii 
in order t o  get a regular surface with at least continu- 
ity of t he  first derivatives. 

DESCRIPTION O F  T H E  M E T H O D  

The method we propose uses two scale transfornia- 
tions, namely (Pd for t he  pre-processing and ?)d for the 
post-processing. T h e  first one, ( P d ,  is used to trans- 
form the  z-values representing the  height of the  un- 
known surface f into values (U; ) ,  regularly distributed 
in an  interval chosen by the  user. The  preprocess- 
ing function (Pd is such tha t  the transformed data 
do not exhibit large local variations, and therefore 
a usual spline operator Td can subsequently b e  ap- 
plied without generating significant oscillations. The  
second scale transformation ?)d is then applied t o  the 
approximated values t o  map them back and obtain 
the  approximated values of z .  It is important t o  un- 
derline that the  proposed scale transformations do  not 

create spurious oscillations. Moreover, this method is 
applied without any particular knowledge of the  loca- 
tion of the  large variations in the  dataset. 

Let us consider a dataset (xt, ~ t ) : = ~ , , , , ~ ( ~ )  indexed 
with a real d,  such tha t  when ti tends t o  0, the number 
of da ta  points N ( d )  tends to infinity. For the  purpose 
of a theoretical study of the  convergence of the  approx- 
imation, we introduce a function f : R -+ [a, b] , such 
tha t  the  dataset becomes ( X : ; , Z ;  = f ( ~ ? ) ) ~ = ,  ,,,, N ( d ) .  

The functions introduced above have t h e  following ex- 
pression, for m E IN: 

d 

(Pd : [a, b] ------) [O,P] c R, 
- Td : ( ( P d o f )  E H'"(R, [O,P])  + T d ( ( P d O f )  E 

- $d (Td ((Pd f ) )  9 

H'" (R, [a, PI> 7 

where the preprocessing (Pd iind the  post-processing 
?)d are continuous scale transformations families, 
where Td is an  approximation operator, for instance a 
spline, and where H"(R, .) denotes the  usual Sobolev 
space. More precisely, we introduce a bounded non 
empty connected set R with a Lipschitz-continuous 
boundary of R2, and an unknown function f E 
H'"' (a, [a, b ] )  t ha t  we want t o  approximate. We also 
introduce the  set 2: of N = N ( d )  real numbers such 
that 

Vxt E Ad, f(x:f) E Z,", 

and the  sequence 2; of p ( d )  distinct z-values obtained 
from the  ordering of Z,", Vi$ cf Z,d,z = 1, ..., p ( d ) ,  

a = 5: < 5; < < ... < z i ( d 1 - l  < E:(d) = b, 

where [a, b] = Im( f) .  
The  sequence 2; will be uLb c . e d  for t h e  construction 

of the  scale transformation families in the  following 
section. In what follows, for convenience, we also write 
( z i )  instead of (~ t ) .  
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The scale transformations (pd and ?+!Jd are one dimen- 
sional spline under tension satisfying 

where the  { ~ i } ~ = ~ , , , , , , ( ~ ~  are a regular subdivision of 

These interval and subdivision are chosen by the 
user. When dealing with surface approximation from 
rapidly varying data, we choose the  interval to be 
[0, 11, and a n  even subdivision of the  { u i }  that  is used 
t o  reduce the local variations of t he  (zi) .  After apply- 
ing ( p d ,  we obtain a new dataset (zi, U ; )  related to the  
initial data by u i  = (pd (zi). We recall that  after the  
pre-processing, t he  large local variations in the dataset 
have been drastically reduced, therefore it is possible 
t o  approximate the  data using a usual spline operator 
Td without generating significant oscillations. To map 
these values back and obtain the approximated values 
of z ,  we need to use a post-processing step, and there- 
fore need to introduce a family (?+!Jd) ,  which is almost 
the  inverse of ( ( P d ) .  

Imf = [%PI. 

The smoothing spline operator 

Given a Lagrange dataset (xi, ( q d  o S) (xi) = q d  (zi)), 
we have to solve the classical problem of construct- 
ing an  approximant Td of class Ck (with IC = 1 
or 2 in practice). In this work, we use a smoothing 
D"-spline, as defined in [l], which has many advan- 
tages: it is possible t o  implement a local refinement, 
the matrix of the linear system is banded, and it is 
possible t o  study the convergence of the  approxima- 
tion. We have chosen t o  use a smoothing Dm-sp1ine 
and not an  interpolation spline because we want t o  
be able t o  work with large datasets of up to several 
hundreds of thousands of points, and in that case, a 
smoothing spline is far less expensive than an  inter- 
polation spline. In order to compute o:, we choose t o  
discretize it on a finite element basis, which enables 
us to obtain a small sparse linear system. In what 
follows, we use either the BFS of class CO or of class 
C' in order to obtain a CQ or C' approximant. 

APPLICATION T O  T H E  T O P O G R A P H Y  
AND BATHYMETRY OF COASTAL AREAS 

IN HAWAII 

The topography and bathymetry of the  Hawaiian Is- 
lands in the  Pacific ocean result from the  activity of 
a Luge hot spot combined with the  effect of erosion. 
This hot spot has been more or less active since the 
Late Cretaceous, and as a result the  Big Island con- 
tinues t o  grow, and t o  the  East a new island is be- 
ing formed. The  hot spot is stationary, hut the  Pa- 
cific plate is moving at a rate of about 3 inches per 

year, which results in the  well-known pattern of older 
eroded islands to the  West, and more recent islands 
to the East. The  next island in Hawaii's volcanic his- 
tory already has a name: Loihi. With the  current 
rate of volcanic activity, Loihi is expected t o  surface 
sometime in the  next 10,000 years. Just 3,180 feet 
(969 m) below the  surface, t he  rising seamount has 
already built up over 15,000 feet from the  ocean floor. 
The maximum height of the Big Island is 4.7-km1 and 
the depth of the  seafloor reaches more than 4-km in 
several places. 

Being able t o  describe the  topography of such re- 
gions exhibiting rapid local variations with at least 
CO regularity, or even C' regularity, is important in 
many fields in geophysics. For example, this descrip- 
tion of the topography can be an  input to numerical 
modeling codes that study the  propagation of pyro- 
clastic flows or lava flows, and related hazard; other 
examples are seismic site effects and ground motion 
amplification due to topographic features. In both 
cases, t o  avoid creating numerical artefacts, it is very 
important not t o  introduce spurious oscillations in the  
description of $he model itself. Otherwise, [7] and [8] 
underlined for instance in the  context of curvilinear 
spectral-element modeling of elastic wave propagation 
that artificial diffraction points appear at the  edges 
between elements, which significantly affects the be- 
havior of surface waves. 

To demonstrate the  efficiency of our method, we 
create C? and C' approximants from a set of 8000 
data points of the  Big Island area. The  data points 
in the  DEM have been obtained by digitizing a map 
of the seafloor. In this DEM, the  height is given on 
an  evenly spaced grid of 80 x 100 points This DEM 
is shown in Fig. 1 using a top view with isocontours 
representing the  height of the  topography. 
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Figure 1 - 2D view of the  data 

In the pre-processing, we choose a regular distribu- 
tion of the  { u i }  in [a, P] = [0, 11 in order to reduce the  
large variations in the  dataset. The.approximants are 
subsequently obtained by discretizing the  D,-spline 
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in a finite-element space. In the case of the C’ ap- 
proximant, we use 15 x 20 rectangular C’-BF8 finite 
elements, each having sixteen degrees of freedoni. In 
both cases, the  smoothing parameter E is taken t o  be 
10-6. 

In Fig.2 , we show a 3-D representation of the C’ 
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Figure 2 - 3D view of the  approxiniant 

approximant after post-processing, evaluated on an  
evenly spaced grid comprising 200 x 200 points. To 
compare this approximant to the  original dataset more 
precisely, in Fig. 3, 

X 

Figure 3 - 2D view of the  approximant 

we present a top view of the  approximated values, 
with isocontours representing the height every 0.2 km, 
in addition t o  the  same plot for the  original dataset, as 
in Fig.1 . It is clear from these plots that the approxi- 
mant is very close te the original data, with local vari- 
ations smoothed as expected. More detailed studies of 
the approximation error, and evidence that the rate of 
convergence is higher in this method than in usual ap- 
proaches with no preprocessing, such as splines under 
tension or thin plate splines, can be found in [4]. 
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