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a b s t r a c t

We implement a 3D spectral-element method for multistage excavation problems. To simulate excava-
tion in elastoplastic soils, we employ a Mohr–Coulomb yield criterion using an initial strain method.
We parallelize the software based on non-overlapping domain decomposition using MPI. We verify the
uniqueness principle for multistage excavation in linear elastic materials. We validate our serial and par-
allel programs, and illustrate several examples of multistage excavation in elastoplastic materials. Finally,
we apply our software to a model of the Pyhäsalmi ore mine in Finland. Strong-scaling performance tests
involving multistage excavation show that the parallel program performs reasonably well for large-scale
problems.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Excavation is a common process in many geotechnical engineer-
ing constructions, for example, underground caverns, tunneling,
mining, and road construction (e.g., [1]). During excavation, a cer-
tain portion of the model is removed in stages, thereby significantly
changing the geometry. Accordingly, the domain, domain boundary,
and boundary conditions of the problem change with each excava-
tion stage. After excavation, newly generated surfaces become trac-
tion-free boundaries (e.g., [2]). Therefore, not only the geometry of
the excavation but also the resulting stress redistribution have
important consequences for the stability of the excavated region.
Simulation of multistage excavation provides progressive informa-
tion during the excavation process, which may be important for eco-
nomic design and efficient risk mitigation.

The finite-element method (FEM) is usually used to simulate the
excavation process. The FEM is a powerful tool for solving boundary
value problems, and is widely used in many applications of solid and
fluid mechanics (e.g., [3–5]). The original idea behind FEM-based
simulations of multistage excavation was to nullify contributions
of nodes of an excavated element by considering an infinitesimal
stiffness (e.g., [6–8]). In a linear elastic medium, multistage excava-
tion satisfies the uniqueness principle first postulated by Ishihara

(e.g., [9,10]). The uniqueness principle is based on the principle of
superposition; it states that the final solution is independent of
the sequence of excavation. Based on the infinitesimal stiffness ap-
proach, it was not always possible to satisfy the uniqueness princi-
ple due to spurious contributions from excavated nodes. To
overcome this problem, Desai and Sargand [11] proposed a hybrid
method to compute nodal loads. Similarly, Borja et al. [12,13] devel-
oped a method employing infinitesimal stiffnesses and a variational
formulation. Comodromos et al. [14] suggested a method based on
the so-called ‘variable domain vector’, which basically tracks intact
and excavated entities so that contributions of excavated nodes may
be removed by static condensation of the resulting matrix system of
the FEM during the solution procedure (e.g., [15,4]). Smith and Grif-
fiths [16] used a similar technique, forming the global equations of
the FEM only for intact elements. There are several other studies
that deal with excavation based on the FEM, e.g., 2D excavation
models [17,18], stability of vertical excavation in plane-strain and
axisymmetric problems [19], and deep excavation [20]. There are
also some studies involving 3D excavation, e.g., 3D modeling of tun-
neling [21], deep excavation in Shanghai [22], and simulations
based on parallel processing [23]. Other related research includes
transient analysis of excavation [24] and excavation in poroelastic
media [25]. The discrete-element method (DEM; e.g., [26,27]) is also
used to simulate excavation (e.g., [28]). The DEM is often suitable for
discontinuous media to simulate brittle failure. However, for reli-
able simulations, a large number of discrete particles is required,
which involves large computational costs. Therefore, particular
types of FEMs, such as the extended finite-element method (XFEM;
e.g., [29,30]), the particle discretization scheme finite-element
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method (PDS-FEM; e.g., [31,32]), or the combined finite-discrete
element method (e.g., [33]) may be of interest.

Most simulations of multistage excavation are limited to either
2D or simple 3D models. In this study, we develop a parallel 3D
package based on a spectral-element method, which may be used
to simulate excavation in complex 3D models of various scales.

The spectral-element method (SEM) is a higher-order FEM in
which integration over an element is based on nodal quadrature,
e.g., Gauss–Legendre–Lobatto quadrature. In nodal quadrature,
interpolation and integration points coincide. In view of nodal
quadrature, the SEM has two main advantages: (1) interpolating
functions become orthogonal at quadrature points, resulting in a
diagonal mass matrix, thereby greatly simplifying the time-march-
ing algorithm because a fully explicit scheme may be used (e.g.,
[3,5]), and (2) interpolation is unnecessary to determine nodal
quantities from quadrature-point quantities and vice versa, thus
simplifying pre- and postprocessing. Therefore, higher-order ele-
ments are easier to implement. In 2D and 3D models, nodal quad-
rature was originally limited to specific types of elements, e.g.,
quadrilaterals and hexahedra. Hexahedral meshing is a challenging
task and an area of active research (e.g., [34–36]). Only a few hexa-
hedral meshing tools are currently available, e.g., CUBIT [37], True-
Grid [38], and Gmsh [39]. Meshing is usually not fully automated,
and careful manual mesh design is often necessary. There have
been successful implementations of the SEM with other types of
elements, for instance, triangles in 2D and tetrahedra in 3D, using
so-called Fekete points (e.g., [40–43]). Since nodal quadrature in-
cludes boundary points, the order of numerical integration may
not always be sufficiently high [44]. Due to the high spatial accu-
racy, however, the influence of low-order integration on accuracy
and convergence may not be critical, depending on the problem
(e.g., [45,46]).

The SEM was originally applied to problems in computational
fluid dynamics [47,48]. Detailed reviews may be found in, e.g., Co-
hen [49] and Deville et al. [50]. Recently, it has been widely used to
simulate seismic wave propagation from local to global scales (e.g.,
[51–58]). Similarly, the nonlinear SEM has been used for 2D visco-
plastic problems [59]. Gharti et al. [60] have developed a software
package for 3D slope stability analysis based on the elastoplastic
spectral-element method. The software has been parallelized for
large-scale problems.

Several problems in geomechanics, e.g., excavation, slope fail-
ure, and mine or tunnel collapse, exhibit elastoplastic deformation,
which is an inherently nonlinear process. Nonlinear problems are
usually solved using a nonlinear finite-element method (e.g.,
[3,61,5,62]). Higher-order finite elements are often desirable to
capture nonlinear behaviour efficiently (e.g., [63–66]). Due to non-
linearity and the use of higher-order elements, computation is of-
ten demanding for elastoplastic problems. Therefore, the SEM may
be a suitable tool for these problems.

In this article, we present a 3D spectral-element implementation
for multistage excavation problems. This work is an extension to the
software package for 3D slope stability analysis [60]. In the excava-
tion algorithm, excavated elements are used solely to compute sur-
face tractions in intact regions. Processing is performed only in
intact elements without ever computing stiffnesses for excavated
elements. This approach leads to a robust and efficient algorithm.
We use an element-by-element preconditioned conjugate-gradient
solver for efficient storage (e.g., [67]). The software is parallelized
based on non-overlapping domain decomposition using MPI
(message passing interface; e.g., [68,69]). We verify the uniqueness
principle for multistage excavation in linear elastic materials. We
validate both serial and parallel programs with an example of mul-
tistage excavation in an elastoplastic material, and apply the tech-
nique to an underground ore mine in Finland. Finally, we present
strong-scaling performance tests of the parallel code.

2. Formulation

2.1. Discretization of the governing equations

The governing equations for elastostatic problems may be writ-
ten in index notation as

rij;j þ fi ¼ 0; ð1Þ

subject to the boundary conditions

ui ¼ ûi on Cu

ti ¼ rijnj ¼ t̂i on Ct;
ð2Þ

where rij = Cijk‘ek‘ represents the stress tensor, ek‘ ¼ 1
2 ðuk;‘ þ u‘;kÞ the

strain tensor, Cijk‘ the fourth-order tensor relating stress and strain,
and fi the force term. The normal to the boundary is denoted by ni,
and ûi and t̂i are the prescribed displacement and traction on
boundaries Cu and Ct, respectively (Fig. 1). We use the summation
convention for repeated indices, and a semicolon (;) denotes covar-
iant differentiation.

The weak form of the governing Eq. (1) is
Z

X
wi;jrijdX ¼

Z
X

wifidXþ
Z

Ct

wit̂idC; ð3Þ

where wi denotes a test function, and X and C the volume and
boundary of the domain, respectively.

For multistage excavation problems, the domain, domain
boundary, and boundary conditions change with each subsequent
excavation stage. Therefore, Eqs. (1)–(3) are generalized to multi-
stage excavation. More specifically, the stress tensor at excavation
stage s depends on the previous excavation stage s � 1 via

rs
ij ¼ rs�1

ij þ Drs
ij; ð4Þ

where Drs
ij denotes the incremental stress due to the removal of

certain portions at excavation stage s.
Spectral-element discretization and integration techniques are

explained in detail in the literature (e.g., [48–50,53,56]). For com-
pleteness, we briefly summarize the procedure here. In the spec-
tral-element method (SEM), the displacement field is discretized
using interpolation functions defined over Gauss–Legendre–Lob-
atto (GLL) points (Fig. 2) via

uiðnÞ ¼
PN
a¼1

ua
i /

aðnÞ; ð5Þ

where ua
i and /a denote nodal displacements and interpolation

functions, respectively, and N denotes the total number of GLL

Fig. 1. Schematic diagram of a multistage excavation. The excavation stages are
numbered.
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points in an element; it is given by the product of the number of GLL
points in each dimension, i.e., N ¼

Q3
j¼1Nj. In the natural state with

coordinates n = {nj}, the Nj GLL points are determined by the roots of
the polynomial ð1� n2ÞP0nðnÞ ¼ 0, where Pn denotes the Legendre
polynomial of degree n = Nj � 1. The interpolation functions /a in
natural coordinates are determined by the tensor product of one-
dimensional Lagrange polynomials

/
aj

j ðnjÞ ¼
QNj

b¼1
b–aj

nj � nb
j

� �

n
aj

j � nb
j

� � ; ð6Þ

such that

/aðnÞ ¼
Q3
j¼1

/
aj

j ðnjÞ; ð7Þ

where a is the index of a GLL point in a linear mapping of the 3D GLL
points, corresponding to location {a1,a2,a3}.

For numerical integration, a point x = {xi} in a deformed element
is mapped to a point n = {nj} in the natural element, as illustrated in
Fig. 2(a) and (b), using the transformation

xðnÞ ¼
PNg

a¼1
xawaðnÞ: ð8Þ

Here wa denotes a shape function and Ng the number of geometrical
nodes xa of an element. The Jacobian matrix of the transformation
has elements determined by Jij(n) = @xi(n)/@nj. The same GLL points
are used as quadrature points for numerical integration.

Since the internal GLL points of a spectral element do not con-
tribute to inter-element connectivity, these points can safely be ex-
cluded during interpolation of model geometry, i.e., N and Ng may
differ. Depending on element type and numerical algorithm, fewer
points may be sufficient to capture transformation (8). Therefore,
we usually have N > Ng, and consequently the degree of the inter-
polating functions, /a, is greater than the degree of the shape func-
tions, wa, leading to a subparametric formulation.

The SEM is a continuous Galerkin method, in which the interpo-
lation function /a is taken as the test function wi. Upon substitut-
ing wi = /a and ui, given by (5), in Eq. (3), we obtain a system of
linear equations that may be written conveniently in the matrix–
vector form

KU ¼ F; ð9Þ

where U is the global displacement vector satisfying the continuity
conditions. Similarly, K ¼

P
eKe and F ¼

P
eFe, are known, respec-

tively, as the global stiffness matrix and global force vector, where

Ke and Fe are the elemental stiffness matrix and elemental force
vector expanded to the same sizes as K and F, respectively, but hav-
ing entries only in locations corresponding to the eth element. Sym-
bolically, we write

Ke ¼
Z

Xe

BT CBdX;

Fe ¼
Z

Xe

UT fdXþ
Z

Ce

UT t̂dC;
ð10Þ

where a superscript T denotes the transpose, Xe the volume, and Ce

the boundary of an element. The quantities U, B, and C are known,
respectively, as the interpolation function matrix, the strain–dis-
placement matrix, and the elasticity matrix.

2.2. Excavation load

During excavation, a newly excavated surface becomes a trac-
tion-free surface. Therefore, a load equal and opposite to the load
contributed by the self weight and stress state of the excavated re-
gion has to be applied on excavated surfaces. This excavation load
is computed using only excavated elements, and it may be ex-
pressed as (e.g., [16])

Fex
e ¼

Z
Xe

BTr0dX�
Z

Xe

UT fgrdX; ð11Þ

where fgr represents the force due to gravity given by {0,0,�ce},
where ce denotes a unit weight of material on the eth element. Sim-
ilarly, r0 represents the initial stress in an element before an exca-
vation stage. If the initial stress before excavation is unknown, it
may be approximated using an overburden pressure determined
by (e.g., [70])

Fig. 2. (a) A typical spectral element with five nodes (open circles) in each dimension. (b) Spectral element mapped to its natural coordinates. The Gauss–Legendre–Lobatto
points (solid black circles) are used for numerical integration. Only nodes on the three visible faces are shown here for clarity.

Fig. 3. Illustration of three partitions (numbered 1, 2, and 3) of an excavation
model. Black lines mark boundaries of partitioned subdomains. The excavation
region is indicated by the shaded rectangle and involves subdomains 1 and 3. The
resulting load affects all three subdomains.

56 H.N. Gharti et al. / Computers and Structures 100-101 (2012) 54–69



rvðz1Þ ¼ rvð0Þ þ
Z z1

0
cðzÞdz; ð12Þ

where c(z) denotes a unit weight of material at depth z. Horizontal
stress is often computed using the simple relation rh = K0rv,
where K0 is the at-rest lateral earth pressure coefficient. For a sim-
ple model, overburden pressure can easily be computed using
relation (12). However, it is difficult to use this relation for com-
plex and heterogeneous models. In such cases, we may use the
spectral-element method itself to compute the stress field before
excavation, taking into account the appropriate boundary condi-
tions. This enables computation of initial stress fields in complex
models.

2.3. Elastoplastic failure

For elastoplastic materials, we implement a Mohr–Coulomb
yield criterion with a non-associated flow rule. The Mohr–Coulomb
yield criterion may be expressed as (e.g., [5])

F ¼ rm sin /þ �r cos h� 1ffiffiffi
3
p sin / sin h

� �
� c cos /; ð13Þ

where rm; �r, and h are the stress invariants known as the mean
stress, deviatoric stress, and Lode theta, respectively. The parame-
ters c and / represent the cohesive strength and internal friction an-
gle of the material, which we assume to be elastic-perfectly plastic.

We solve the elastoplastic problem in an iterative manner using
an initial strain method (e.g., [71]). In this method, the material is
allowed to sustain stresses outside the failure envelope for a finite
period, and plastic strain is computed using a concept of pseudo-
viscosity. Hence the method is also referred to as the ‘viscoplastic
strain method’ (e.g., [16]). The method attempts to satisfy non-lin-
ear behavior by successively correcting loads and solving linear
system (9) using constant stiffness

KUk ¼ Fþ ðFpÞk: ð14Þ

The force term (Fp)k at each iteration k depends on the force term at
the previous iteration k � 1 and incremental plastic strain (dep)k,
and is given by

Fig. 4. (a) 1D excavation model with four excavation stages (numbered 1, 2, 3, and 4). (b) Spectral-element mesh of the model with three GLL points in each dimension. The
total number of elements is 256.

Fig. 5. (a) Displacement field and (b) Displacement vectors at the final stage. Results for single – and multistage simulations were identical.
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ðFpÞk ¼ ðFpÞk�1 þ
P

elements

Z
Xe

BT CðdepÞkdX: ð15Þ

The force contributed by the incremental plastic strain is self-equil-
ibrating so that net loading remains the same. This load is accumu-
lated in successive iterations until convergence is achieved.
Convergence is measured as kUk � Uk�1k/kUk�1k 6 �, where � is a
tolerance.

3. Numerical implementation and parallelization

We implement an efficient and robust strategy for the simula-
tion of multistage excavation. Surface traction due to excavated re-
gions is computed solely based on excavated elements. The
equations are formed only for active degrees of freedom corre-
sponding to intact nodes, similar to the strategy of Comodromos
et al. [14] and Smith and Griffiths [16]. The stiffness matrix is com-
puted and stored only for intact elements. In order to solve the lin-
ear equations, we use an element-by-element preconditioned

conjugate-gradient method, which is an iterative solver widely
used in the classical FEM (e.g., [4]). Both conjugate gradient and
nonlinear iteration loops only involve intact elements. Since the
numbers of excavated and intact elements change at each excava-
tion stage, we use dynamic-memory allocation to manage memory
efficiently.

In order to handle large-scale problems, the software is parall-
elized based on a non-overlapping domain decomposition method
(e.g., [72,73]). In this method, the mesh is divided into a number of
subdomains. No subdomains share elements, and only nodes lo-
cated on common subdomain interfaces are shared. We use the
parallel library MPI to facilitate communication across processors.
For efficient parallel processing, elements should be approximately
equally distributed among subdomains, and additionally the num-
ber of nodes on subdomain interfaces should be minimal. Conse-
quently, efficient mesh partitioning is required. There are some
open-source tools for both serial and parallel graph partitioning,
e.g., SCOTCH [74] and METIS [75]; in this study we use SCOTCH.
To simulate multistage excavation, we implement a fixed-partition

Fig. 6. (a) 2D excavation model with three excavation stages (numbered 1, 2, and 3). (b) Spectral-element mesh of the model with three GLL points in each dimension. The
total number of elements is 1000.

Fig. 7. (a) Displacement profile along a vertical line at x = 5 m and y = 5 m for an elastic material. (b) Same as (a) but for an elastoplastic material. The displacement profiles for
the elastic material are identical for single – and multistage simulations.

58 H.N. Gharti et al. / Computers and Structures 100-101 (2012) 54–69



strategy, i.e., the domain is partitioned once and for all before exca-
vation begins. Since the excavated portion may involve any num-
ber of subdomains, the excavation load should be computed and
distributed carefully. For example, Fig. 3 illustrates an excavation
in a fixed-partition model with three subdomains. The excavation
region lies in partitions 1 and 3, and hence excavation loads are
computed only in these partitions. Since processing involves only
intact elements, some of the excavation loads are unused by parti-
tions 1 and 3 although these are necessary for partition 2. There-
fore, these unused loads are distributed to neighboring active
partitions, partition 2 in this example.

The fixed-partition strategy is relatively simple to implement.
Once preprocessing is completed and communication topology
for parallel processing is determined, modification of preprocess-
ing and communication topology at subsequent excavation stages
is straightforward. However, load-balancing may not always be
perfect because the excavated region can involve any number of
partitions, and the excavated portion in each partition may not
be equivalent. Alternatively, we may repartition the intact domain

at each excavation stage, but this requires preprocessing and deter-
mination of the communication topology at every stage. In this
article, we use only the fixed-partition strategy for all examples
dealing with parallel processing.

We use a parallel preconditioned conjugate-gradient solver to
be consistent with the non-overlapping domain decomposition
scheme. This solver has previously been implemented in both
overlapping and non-overlapping domain decomposition methods
(e.g., [76–80]). In the domain decomposition method, each proces-
sor solves its own part of the system, occasionally communicating
across processors to assemble entities along common interfaces.
Depending on the boundary conditions, load balancing during
the solution procedure may not be ideal, even if the mesh is evenly
decomposed. One can also repartition the degrees of freedom so
that close to perfect load-balancing is achieved during the solution
procedure (e.g., [81]). However, the communication topology for
parallel processing may be complicated. In the future, other algo-
rithms which provide more data locality, e.g., localized ILU precon-
ditioning (e.g., [82]), could be of interest.

Fig. 8. Displacement field at the final stage for (a) three-stage excavation and (b) single-stage excavation. The displacement field in each figure is independently scaled to its
displacement range.

Fig. 9. Displacement vectors at the final stage for (a) three-stage excavation and (b) single-stage excavation. The vector field in each figure is independently scaled to its
displacement range.
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4. Numerical results

4.1. Example 1: 1D excavation in a linear elastic medium

In the first example, we take a simple four-stage excavation
model with a total excavation height of 20 m (Fig. 4(a)). The model
consists of a linear elastic material with Young’s modulus E = 104

kN/m2, unit weight c = 1 kN/m3, Poisson’s ratio m = 0.2, and at-rest
pressure coefficient K0 = 0.5. For the boundary conditions, nodes
located on the bottom surface are fixed in both directions, and
nodes located on side surfaces are fixed only along the normals
to the corresponding surfaces. Due to the boundary conditions
and excavation geometry of this particular model, displacement
depends only on the z dimension. Therefore, this example is equiv-
alent to a 1D problem. This particular model has been used by sev-
eral authors to validate their excavation algorithms (e.g., [7,8,14]).
The analytical solution for this problem gives an upward displace-
ment of 0.036 m on the excavated surface at the final stage (e.g.,
[14]).

Since the model has a simple geometry, meshing is straightfor-
ward. Here, we use the mesh generation tool kit CUBIT [37]. The
generation of spectral elements with more than three GLL points

in each dimension is currently not possible directly within CUBIT.
Therefore, we first create an 8-node hexahedral mesh with CUBIT,
and the mesh is subsequently converted to a spectral-element
mesh with the desired number of GLL points within our main pro-
gram. For this example, we use three GLL points in each dimension,
resulting in a total of 27 nodes per element. We mesh the model
with an element size of 5 m, resulting in a total of 256 elements
(Fig. 4(b)). Based on this mesh, we perform two simulations using
our serial SEM program. In the first simulation, four layers are
excavated sequentially in four stages. In the second simulation,
four layers are excavated in a single stage. We set a relative toler-
ance of 10�8 for conjugate-gradient iterations.

With both simulations, we obtain the same 0.036 m upward
displacement on the excavated surface (Fig. 5(a) and (b)). This dis-
placement is in perfect agreement with the analytical solution. As
expected, we obtain the same displacement field and displacement
vectors in the entire domain for single- and multistage excava-
tions. Hence, the final solution is independent of the excavation se-
quence, thereby verifying the uniqueness principle for linear
elastic materials.

4.2. Example 2: 2D excavation

In this example, we consider a three-stage excavation model
with a total excavation height of 6 m (Fig. 6(a)). The material has
unit weight 20 kN/m3, Young’s modulus 105 kN/m3, cohesion

Fig. 10. (a) Maximum displacement and (b) total number of nonlinear iterations at three excavation stages for various cohesion values. The excavation stages are numbered
1, 2, and 3.

Fig. 11. Maximum displacement at the final stage of excavation for different
degrees of h- and p-refinement computed for a range of cohesion values. The
displacement for the lowest cohesion value for each curve represents the non-
converged solution. Fig. 12. Excavation model with three excavation stages (numbered 1, 2, and 3).
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31 kN/m2, friction angle 0�, and dilation angle 0�. For initial stress,
we consider only the overburden pressure, which we compute dur-
ing the initial stage of the simulation using the SEM itself. We use
the same boundary conditions as in the previous example. Due to
the boundary conditions and the excavation geometry of this
particular model, the displacement depends only on the x and z
coordinates. Therefore, this example is equivalent to a 2D plane
strain problem.

We mesh the model with an element size of 1 m, resulting in a
total of 1000 elements. For the elastoplastic material we need to
solve nonlinear constitutive equations. Therefore, we use a finer
mesh than in the previous example to capture nonlinear behavior
of the model. We use three GLL points in each dimension. We set
relative tolerances of 10�8 for conjugate-gradient iterations and
10�5 for nonlinear iterations. Similarly, we set the maximum num-
ber of nonlinear iterations to 5000. We perform four different sim-
ulations using the serial SEM program: (1) single-stage excavation
in an elastic material, (2) multistage excavation in an elastic mate-
rial, (3) single-stage excavation in an elastoplastic material, and (4)
multistage excavation in an elastoplastic material. Fig. 7(a) and (b)
show displacement profiles along a vertical line in the middle of
the vertical excavated surface. As expected, profiles for single –
and multistage simulations computed in the elastic medium are

identical. We observe small discrepancies between the profiles of
single – and multistage simulations computed in the elastoplastic
medium. Although the displacement field and displacement
vectors appear similar for single- and multistage simulations in
an elastoplastic medium, we observe small numerical discrepan-
cies of order �1.4 � 10�4 m.

One purpose of the simulation of the excavation process is to
assess the stability of structures. We can estimate the limiting
strength of the material at which the model collapses during the
excavation. In order to estimate this limiting strength (i.e., cohe-
sion in our example), we compute displacement fields for a range
of cohesion values. Fig. 10(a) and (b) show the resulting maximum
displacement and required number of nonlinear iterations, respec-
tively. We observe a small displacement for excavation stages 1
and 2. Relatively few iterations are required for convergence at
these stages, and the model exhibits mostly elastic behaviour for
all strengths. For excavation stage 3, we observe small displace-
ments until the strength reaches approximately 32 kN/m2, and
the corresponding nonlinear iterations are relatively few. At
strength 31 kN/m2 the displacement begins to increase noticeably,
requiring a larger number of nonlinear iterations. The displace-
ment suddenly increases at 30 kN/m2, and it does not converge
within the given maximum number (i.e., 5000) of nonlinear itera-

Fig. 13. (a) Spectral-element mesh of a model with three GLL points in each dimension. (b) Same as (a), but partitioned into eight subdomains for parallel processing. The
total number of elements is 1700.

Fig. 14. (a) Displacement profile along a vertical line at x = 10 m and y = 5 m for an elastic material. (b) Same as (a) but for an elastoplastic material. The displacement profiles
for the elastic material are identical for single – and multistage simulations.
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tions. This indicates a possible collapse of the model, and hence the
limiting strength of the model is �30 kN/m2. For the plane strain
condition, the classical-limit plastic solution (e.g., [83,84]) gives a
value of limiting cohesion of approximately 31 kN/m2 for an exca-
vation height of 6 m, which is in good agreement with the com-
puted result. The maximum displacement and total number of
nonlinear iterations appear similar for single – and multistage

excavations with a maximum discrepancy of �5.8 � 10�5 m in dis-
placement magnitude (Fig. 10(a) and (b)). We observe a circular
failure pattern after the final excavation stage, which is similar
for single- and multistage excavations (Fig. 8(a) and (b)) (see
Fig. 9).

Although it is difficult to compute accurate displacements dur-
ing collapse, we conduct multistage simulations for elastoplastic

Fig. 15. Displacement fields (left column) and displacement vectors (right column) computed at three excavation stages (top to bottom: stages 1, 2 and 3). The displacement
and vector fields in each figure are independently scaled to their range. The results obtained by the serial and parallel programs are identical.
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media considering different degrees of h – and p-refinements of the
mesh and monitor how the SEM results behave. We discretize the
model with four different element sizes of approximately 2 m, 1 m,
0.75 m, and 0.5 m, resulting in a total number of elements of 150,
1000, 2548, and 8000, respectively. First, we perform four comple-
mentary simulations of the multistage excavation based on these
four meshes, using three GLL points in each dimension. Second,
we perform two complementary simulations with the coarsest
mesh (element size 2 m) using, respectively, four and five GLL
points in each dimension. In each simulation, we compute the dis-
placement field for a range of cohesion values, successively

Fig. 16. (a) Maximum displacement and (b) total number of nonlinear iterations at three excavation stages (numbered 1, 2, and 3) for various cohesion values.

Fig. 17. (a) Pyhäsalmi mine with surrounding infrastructure: copper/zinc ore body (brown/pink), access tunnels (yellow), elevator shaft (dark blue), and seismic stations
(numbered). The passage for quarried ore is marked by KN1. (b) 3D wave-speed model (see Table 1) of the Pyhäsalmi mine: stopes, i.e., mined-out cavities (blue) and ore body
(brown). The remainder is host rock. Geophones are indicated by black dots and numbered. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 18. Simplified 3D model of the Pyhäsalmi mine, including only the ore body
(solid) and two major stopes (black).

Table 1
Material properties of the Pyhäsalmi mine model.

Host rock Ore body

Mass density (kg/m3) 2000 4400
P-wave speed (m/s) 6000 6300
S-wave speed (m/s) 3460 3700
Cohesion (MPa) 14 14
Friction angle (�) 39 39
Dilation angle (�) 0 0
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decreasing its value until the solution fails to converge within the
fixed maximum number of nonlinear iterations. Fig. 11 summa-
rizes the results of these simulations. With the coarsest mesh,
using three GLL points, we observe a sudden increase in maximum
displacement at a cohesion of 28 kN/m2, and the solution does not
converge thereafter. This gives an approximate limiting cohesion of
28 kN/m2, which is �10% less than the correct limiting strength of
31 kN/m2. With a finer mesh of element size 1 m, we obtain an
approximate limiting cohesion of 30 kN/m2, which is �3% less than
the actual value. As we further refine the mesh, the limiting cohe-
sion converges to the correct value. On the other hand, with the
coarsest mesh and four GLL points, we obtain an approximate lim-
iting cohesion of 31 kN/m2, in agreement with the actual value. The
results involving the coarsest mesh and four or five GLL points are
similar to those obtained based on finer meshes with element sizes
of 0.75 m and 0.5 m, respectively.

4.3. Example 3: 3D excavation

In the third example, we simulate single- and multistage exca-
vation in the model shown in Fig. 12. We use the same material
properties as in previous cases except for the value of cohesion,

which is 25 kN/m2. We again consider only overburden pressure
as initial stress and use the same boundary conditions as in the
previous examples. Unlike in previous examples, the displacement
in this model depends on all three (i.e., x, y, and z) coordinates. The
model is meshed using an average element size of 1 m, resulting in
a total of 1700 elements (Fig. 13(a)). In order to validate our paral-
lel program, we also partition this mesh into eight subdomains
using the graph partitioning tool SCOTCH [74] for parallel process-
ing (Fig. 13(b)).

We perform four different simulations with each of the serial
and parallel SEM programs: (1) single-stage excavation in an elas-
tic material, (2) multistage excavation in an elastic material, (3)
single-stage excavation in an elastoplastic material, and (4) multi-
stage excavation in an elastoplastic material. We use three GLL
points in each dimension and set the same relative tolerance for
conjugate gradient and nonlinear iterations, and the same maxi-
mum number of nonlinear iterations as in previous cases. For the
elastoplastic case, we apply the excavation load in ten increments.
Fig. 14(a) and (b) show displacement profiles along a vertical line
on the front-left vertical excavated corner. As expected, profiles
for single- and multistage simulations computed in the elastic
medium are identical. We observe small discrepancies between

Fig. 19. Four excavation stages in the Pyhäsalmi mine model. (a) Stage 1. (b) Stage 2. (c) Stage 3. (d) Stage 4.
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profiles of single- and multistage simulations in the elastoplastic
medium. Results computed by the serial and parallel programs
are in excellent agreement.

Fig. 15(a)–(f) show the resulting displacement fields and dis-
placement vectors obtained from the multistage simulation in an
elastoplastic medium. We obtain a maximum numerical discrep-
ancy on the order of �4.5 � 10�4 m between single- and multi-
stage displacement fields. During the first excavation stage, the
excavation height is small and, therefore, upward displacement
of the floor is dominant. As the excavation height increases, dis-
placements on the side walls become dominant and hence failure
may occur.

Using the same model, we compute displacements for a range of
cohesion values considering both single- and multistage excava-
tions. We use both serial and parallel programs. Fig. 16(a) and (b)
show the resulting maximum displacements and corresponding
number of nonlinear iterations, respectively, observed at different
excavation stages. Both excavation stages 1 and 2 result in a small

displacement requiring very few nonlinear iterations. During these
stages the model behaves mostly as an elastic material. On the other
hand, during excavation stage 3, as cohesion decreases, the model
undergoes plastic deformation, requiring larger numbers of nonlin-
ear iterations to converge. Maximum displacements computed by
the serial and parallel programs are in perfect agreement for all
cohesion values (Fig. 16(a)), and the number of nonlinear iterations
is also similar (Fig. 16(b)). Displacements computed for single-stage
excavation are similar to those for multistage excavation, but some
discrepancies are observed after the model undergoes plastic defor-
mation. The required number of nonlinear iterations is different
compared to the multistage excavation case. For this excavation
model, the limiting value of cohesion is estimated to be �24 kN/
m2 (Fig. 16(a) and (b)).

4.4. Example 4: Excavation in a mine

In this example, we apply our parallel program to an under-
ground ore mine, namely the Pyhäsalmi mine in central Finland.
This mine consists of a volcanogenic massive sulphide (VMS) depos-
it, and produces mainly copper, zinc, and pyrite concentrates. The

Fig. 20. (a) Spectral-element mesh for a 3D model of the Pyhäsalmi mine. (b) Interior section of the mesh visualizing the ore body. Colours represent the different volumes
created for meshing.

Fig. 21. Spectral-element mesh of a 3D model of the Pyhäsalmi mine partitioned
into 32 subdomains. Thick black lines represent subdomain interfaces.

Fig. 22. Maximum displacement at four excavation stages. The solutions at all
stages converge in one iteration per load increment.
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copper-zinc ore body in the mine extends down to a depth of
�1.4 km (Fig. 17(a)), and microearthquakes are frequently observed
(e.g., [85]). The in-mine seismic network comprises eighteen geo-
phones [86] that are used to record and locate microearthquakes in-
duced by mining operations. Fig. 18 illustrates the 3D wave-speed
model used for the simulation of seismic wave propagation (see
e.g., [87]), which consists of an ore body, host rock, and stopes
(i.e., mined out voids) (Table 1).

To simulate multistage excavation, we estimate Young’s modulus
andPoisson’sratiofromtheseismicpropertiessummarizedinTable1
(e.g., [88]). The estimated values of Young’s moduli for the host rock
andtheorebodyareapproximately60 GPaand149 GPa,respectively.
TheapproximatePoisson’sratiosfortheorebodyandthehostrockare
0.25 and 0.24, respectively. We consider only overburden pressure as
initialstress,computedwithintheSEMprogrambeforetheexcavation
loopbegins.

Due to the complex structure of, in particular, mined-out cavi-
ties, it is difficult to generate a hexahedral mesh for the complete
model (Fig. 17(b)). Therefore, we simplify the original model and
consider only two major stopes (Fig. 18). We assume four excava-
tion stages, as shown in Fig. 19(a)–(d). Unlike previous examples,
there are two different excavation regions within the model. Each
region is excavated in two stages. We assume that the four excava-
tion stages are performed sequentially, as shown in Fig. 19(a)–(d).
For this example, we use the same boundary conditions as in the
previous examples.

Even with this simplified model, generation of a hexahedral
mesh with CUBIT is nontrivial. To be able to generate a high-quality
mesh, we need to decompose the complex geometry into meshable
volumes. We divide this particular model into 78 volumes that can
be meshed with the functionalities available in CUBIT (Fig. 20(a)).
We mesh the model with an average element size of 9.5 m for the

Fig. 23. Displacement fields computed at four excavation stages, visualized in the section taken at x = 350 m. (a) Stage 1. (b) Stage 2. (c) Stage 3. (d) Stage 4. Displacement
fields in each figure are independently scaled to their range.
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rock and 10 m for the ore body, resulting in a total of 107,712 spec-
tral elements (Fig. 20(a) and (b)), which leads to a total of 7,161,572
nodes using three GLL points in each dimension of each element.

We partition the mesh into 32 domains for parallel processing
(Fig. 21). We use a fixed-partition strategy and, therefore, distribu-
tion of the load among processors may vary in time and become
less optimal as excavation progresses.

For this example, we set relative tolerances of 10�8 for conju-
gate gradient iterations and 10�5 for nonlinear iterations, as in
the previous examples. We apply the excavation load in 10
increments.

Fig. 22 shows maximum displacements computed at four exca-
vation stages. Only one iteration per load increment is needed for
convergence, suggesting fully elastic behavior, due to the fact that
the rock and ore body are very sound, having large cohesion and
friction values. In fact, a single increment suffices for this model.
There is no plastic deformation during these excavation stages.
Figs. 23 and 24 illustrate displacement fields and displacement
vectors, respectively, computed at four excavation stages. The up-
ward displacements of roofs and downward displacements of
floors are larger than displacements of side walls. In excavation
stages 3 and 4, we observe regions of small displacements in the

slab (i.e., the model portion between the two excavated cavities).
The top surface of the slab experiences upward displacements

Fig. 24. Displacement vectors computed at four excavation stages, visualized in the section taken at x = 350 m. (a) Stage 1. (b) Stage 2. (c) Stage 3. (d) Stage 4. Shaded surfaces
represent interfaces of partitioned subdomains. Vector fields in each figure are independently scaled to their range.

Fig. 25. Total elapsed time for a fixed problem size run on 16, 32, 48, 64, 80, and 96
processors, compared to a reference line computed using the total elapsed time on
48 processors.
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and the bottom surface experiences downward displacements due
to removal of material during respective excavations. However,
small displacements do not necessarily imply stability of the slab.
Such slabs may actually behave as a bending plate under certain
circumstances (e.g., [89]).

4.5. Parallel performance

Finally, we conduct a strong-scaling performance test of our par-
allel program using the model of the Pyhäsalmi mine. We measure
total computation times for different numbers of processors, keep-
ing the problem size fixed. We run the parallel program on 16, 32,
48, 64, 80, and 96 processors. The results shown in Fig. 25 illustrate
that the code scales reasonably well for large problems. Although
we have used a fixed-partition strategy, parallel performance is rea-
sonable. For the cases in which load-balancing is severely affected,
partitioning of the intact region at every excavation stage may be
a suitable option, despite requiring extra computation for prepro-
cessing and determination of the communication topology. In the
future, it may be important to implement efficient algorithms for
node renumbering, e.g., the reverse Cuthill–McKee algorithm [90],
to improve parallel performance (e.g., [91]). In addition, GPU
(Graphics processing unit) could be utilized to further improve
the performance in future versions of our software (e.g., [92–94]).

5. Discussion and conclusions

We have successfully implemented a spectral-element method
for 3D multistage excavation. The numerical method is parallelized
based on domain decomposition using MPI. Our program satisfies
the uniqueness principle for multistage excavation in linear elastic
materials. We have validated both the serial and parallel versions
of the program, and demonstrated several simulations of multi-
stage excavation in elastoplastic materials. We have simulated
multistage excavation in a heterogeneous model of the Pyhäsalmi
mine in Finland. This simulation illustrates a potential application
of the software to complex and large-scale excavations. Due to very
sound rock in the mine, unstable zones are barely visible during
the excavation stages. We plan to perform future simulations with
a more realistic model of the Pyhäsalmi mine that better captures
the in situ stress state and actual excavation stages. Since mining
operations are often initiated by blasting, it would be helpful to in-
clude blasting effects by considering brittle failure.

We have used a mesh with uniform element size for purposes of
demonstration. Using a mesh with local refinement, e.g., geometri-
cally adaptive meshing, may be important for efficient simulations
of large-scale problems. For load-controlled problems in elasto-
plastic media, the constant-stiffness approach overestimates the
stiffness near collapse. As a result, a large number of iterations is
required to achieve convergence (e.g., [16]). Hence, other more
accurate and efficient integration algorithms for elastoplastic con-
stitutive relationships may be important, e.g., modified Euler
methods with drift correction and automatic error control (e.g.,
[95,96]), or return mapping algorithms (e.g., [64,97]).

In some excavation problems, it may also be important to assess
long-term creeping behaviour of structures such as tunnels or
mines. This would require implementation of viscoelasticity or
viscoplasticity. We have only implemented material nonlinearity,
and in the future it will also be important to implement geometri-
cal nonlinearity for the analysis of large displacements, e.g., based
on adaptive mesh refinement.

Our software called SPECFEM3D_GEOTECH is open-source, and
the entire package is freely available via www.geodynamics.org.
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