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S U M M A R Y
Wavelets are extremely powerful to compress the information contained in finite-frequency
sensitivity kernels and tomographic models. This interesting property opens the perspective
of reducing the size of global tomographic inverse problems by one to two orders of mag-
nitude. However, introducing wavelets into global tomographic problems raises the problem
of computing fast wavelet transforms in spherical geometry. Using a Cartesian cubed sphere
mapping, which grids the surface of the sphere with six blocks or ‘chunks’, we define a
new algorithm to implement fast wavelet transforms with the lifting scheme. This algorithm
is simple and flexible, and can handle any family of discrete orthogonal or bi-orthogonal
wavelets. Since wavelet coefficients are local in space and scale, aliasing effects resulting from
a parametrization with global functions such as spherical harmonics are avoided. The sparsity
of tomographic models expanded in wavelet bases implies that it is possible to exploit the
power of compressed sensing to retrieve Earth’s internal structures optimally. This approach
involves minimizing a combination of a �2 norm for data residuals and a �1 norm for model
wavelet coefficients, which can be achieved through relatively minor modifications of the
algorithms that are currently used to solve the tomographic inverse problem.
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1 I N T RO D U C T I O N

In the last decades, finite-frequency effects have started to be ac-
counted for in seismic tomography (e.g. Spetzler & Trampert 2003;
Montelli et al. 2004a). Since Born–Fréchet kernels describe finite
frequency and wavefront healing effects on traveltimes (Hung et al.
2000, 2001) in contrast to ray theory, their introduction in seismic
tomography fuelled great hopes about improving the resolution of
both regional and global tomographic models. However, these ex-
pectations were soon shown to be over-optimistic, the tomographic
models obtained with finite-frequency theory being statistically sim-
ilar to those obtained with asymptotic ray theory (e.g. Montelli et al.
2004b; Trampert & Spetzler 2006).

The reason why finite-frequency theory gave so far results sim-
ilar to ray theory is simple: in order to be numerically accurate,
sensitivity kernels have to be computed on a very fine grid. These
are the kernels that are always shown in scientific publications. The
sensitivity kernel for a traveltime measured by cross-correlation
with a synthetic seismogram is a banana-shaped region surround-
ing the geometrical ray (Dahlen et al. 2000). Fig. 1(a) shows such
a finite-frequency kernel for a Pdiff wave with a dominant period
of 2 s recorded at a distance of 103◦. This kernel has been cal-
culated in a fine grid, for a cell size of 0.35◦, using a database

of strain Green’s functions pre-computed with the Direct Solution
Method (Fuji et al. 2012). However, to keep the inverse problem
tractable, the kernels that are effectively used in tomographic inver-
sions are always projected on much coarser tomographic grids. The
results of such projections are shown in Figs 1(b)–(d), where the
same kernel as in Fig. 1(a) has been projected on coarser regular
grids with block sizes of 0.7◦, 1.4◦ and 2.8◦. For blocks as small
as ∼3◦, which are smaller than those used classically in global to-
mography, the hole in the kernel and the second Fresnel zone are
no longer present; the projected kernels look like fat rays. There
is a good reason for this, which is also well understood: the Fer-
mat principle tells us that when we sum the contributions of all
the individual paths that contribute to an observed waveform, only
those that are close to the stationary phase path are important. The
others have a phase that varies rapidly and thus interfere destruc-
tively. When integrating kernels over blocks with a size comparable
to the width of the Fresnel zone, we thus expect to recover the re-
sults of the stationary phase approximation, namely ray theory. Of
course, there is nothing wrong with using finite-frequency theory
and a coarse tomographic grid, but it is just a very inefficient way
of implementing ray theory tomography. Another factor that has
a detrimental effect on tomographic models comes from the regu-
larization constraints (damping and smoothing) that are introduced
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Figure 1. Sensitivity kernel for the traveltime of a 2 s Pdiff wave recorded at an epicentral distance of 103◦, projected in a grid with 0.35◦ (a), 0.70◦ (b), 1.40◦
(c) and 2.80◦ (d) cells.

to stabilize the inversion. In many cases, and especially in global
tomographic studies, the resulting loss in resolution is such that it
is not possible to resolve structures smaller than the size of Fres-
nel volumes, meaning that considering 3-D sensitivity kernels in
the inversion is simply pointless. This suggests that previous global
finite-frequency tomographic studies found models almost identi-
cal to those obtained with ray theory because of the utilization of
coarse tomographic grids and/or of an insufficient resolution poten-
tial to benefit from accounting for finite-frequency effects on seismic
traveltimes.

These simple considerations suggest that in order to improve the
resolution in finite-frequency tomography, it is necessary to use
finer parametrizations than used in the past, capable of keeping
the detailed structural sensitivity to perturbations of seismic veloc-
ities. Of course, this is not a sufficient condition since resolution
will also depend on ray coverage and data quality, for example. In
any case, using finer tomographic grids implies considering much
larger parameter spaces and consequently solving much larger to-
mographic inverse problems. Recognizing this problem, Chevrot &
Zhao (2007) proposed to project sensitivity kernels on a basis of
discrete Haar wavelets in a 3-D Cartesian grid. This allowed them
to significantly compress the number of coefficients necessary to
describe the information contained in 3-D finite-frequency kernels.
Using a conservative compression ratio of 8, they obtained a re-
construction error around 2 per cent. In this study, we explore the
potential of using discrete wavelet bases in global tomography. This
raises the new problem of computing discrete wavelet transforms
in spherical geometry. This problem has been addressed previously
by Schröder & Sweldens (1995) using a tessellation of the sphere
with triangles. In contrast, our method relies on the so-called ‘cubed
sphere’ mapping (Sadourny 1972; Ronchi et al. 1996; Komatitsch
& Tromp 2002), which leads to a much simpler algorithm and bet-
ter performance. While a similar construction has been used by

Simons et al. (2011) to compute 2-D wavelet transform on the
surface of the cubed sphere, our algorithm is different and much
easier to implement because it does not require to consider overlap-
ping ‘superchunks’, which are obtained by extending the original
chunks in the cubed sphere by 50 per cent. Our algorithm builds on
the power, efficiency and simplicity of the lifting scheme (Sweldens
1995) in Cartesian coordinates, which has been adapted to spherical
geometry.

The paper is organized as follows: We first describe the construc-
tion of the cubed sphere, and the forward and inverse mappings
between spherical coordinates and cubed-sphere coordinates in Sec-
tion 2. In Section 3, we present the lifting scheme algorithm on the
cubed sphere surface and the principle of compression by threshold-
ing wavelet coefficients. We then show the compression rates that
can be attained for Earth’s topography and for tomographic mantle
model S40RTS (Ritsema et al. 2011) at 200 km depth. The algorithm
is then generalized to the 3-D case in Section 4 by adding an addi-
tional wavelet transform along the radial or vertical dimension. We
demonstrate that using bi-orthogonal Cohen–Daubechies–Feauveau
(CDF) wavelets (Cohen et al. 1992), we obtain very high compres-
sion rates on both 3-D finite-frequency kernels and tomographic
models. We then explore in Section 5 the potential of exploiting
the compact or sparse representations of such basic ingredients of
finite-frequency tomography to optimize efficiency and resolution
in future global tomographic studies.

2 C O N S T RU C T I O N O F T H E C U B E D
S P H E R E

The cubed sphere is constructed by inflating a cube to make it fit
the shape of a sphere. Following Ronchi et al. (1996), we define the
angular coordinates ξ and η that span the interval [ − π /4, π /4] on
each face of the cubed sphere. The Cartesian coordinates of a point
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Figure 2. Construction of the cubed sphere and numbering of its six faces. The spherical surface is mapped to the six faces of a cube shown here in plane
view. Each face is represented by an equidistant mesh with surface coordinates ξ and η in the interval [−π /4, π /4]. In this example, each face has 22N points,
with N = 5.

(ξ , η, r), where r is the radial coordinate, are given by

(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r (1, tan ξ, tan η)/s if k = 1,

r (− tan ξ, 1, tan η)/s if k = 2,

r (−1,− tan ξ, tan η)/s if k = 3,

r (tan ξ, −1, tan η)/s if k = 4,

r (− tan η, tan ξ, 1)/s if k = 5,

r (tan ξ, tan η, −1)/s if k = 6,

(1)

where s =
√

1 + tan2 η + tan2 ξ and k is the face number. This
cubed sphere transformation maps the spherical surface of the Earth
on the six faces of the cube with 2N × 2N elements, as shown in
Fig. 2. The total number of elements for the whole spherical surface
is thus 6 × 22N . Note that the ξ and η coordinate axes are common
to the six faces of the cube in the 2-D plane. However, each face
has its own origin defined on its lower left corner.

Using conventions (1) and defining t = max(|x|, |y|, |z|), the
inverse mapping is

(ξ, η, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
tan−1(y/x), tan−1(z/x), 1

]
if t = x,[

tan−1(−x/y), tan−1(z/y), 2
]

if t = y,[
tan−1(y/x), tan−1(−z/x), 3

]
if t = −x,[

tan−1(−x/y), tan−1(−z/y), 4
]

if t = −y,[
tan−1(y/z), tan−1(−x/z), 5

]
if t = z,[

tan−1(−y/z), tan−1(−x/z), 6
]

if t = −z.

(2)

3 T H E L I F T I N G S C H E M E

The lifting scheme is an algorithm that reduces the number of
operations to compute discrete wavelet transforms. It also reduces
the memory required for its implementation, since all operations
are performed in place, within the input array data. For a tutorial on

the lifting scheme, we refer the reader, for instance, to Sweldens &
Schröder (1996) and the textbook ‘Ripples in Mathematics’ (Jensen
& la Cour-Harbo 2001). Let us only give a brief outline below.

To illustrate the principle of the lifting scheme, let us consider
the simple Haar wavelet transform Haar (1910). The Haar transform
consists in replacing two neighbouring samples sn,2l and sn,2l +1 of
an input signal at scale n with 2n samples by their average and
difference:

sn−1,l = sn,2l+1 + sn,2l

2
, (3)

dn−1,l = sn,2l+1 − sn,2l . (4)

After applying these operations to the 2n samples of the input signal,
we are left with 2n −1 averages sn −1,l and 2n −1 differences dn −1,l.
We can think of the averages sn −1 as a coarser representation of the
input signal sn and of the differences dn −1 as the detail information
needed to recover the original signal from its coarser representation.
If there is some correlation in the input signal, neighbouring samples
will have similar values and difference or detail coefficients will
be much smaller than the original signal values. This important
property implies that it is possible to obtain a sparse representation
of the input signal, with a much smaller number of coefficients. This
wavelet transform can be repeated iteratively at scales up to n before
running out of samples, after which we obtain a representation of
the signal at different scales j with 0 ≤ j ≤ n − 1, each with 2j

coefficients.
The power of the lifting scheme is to perform the same wavelet

transform in-place by over-writing the values at locations sn,2l +1

and sn,2l by the average sn −1,l and difference dn −1,l. This can be
done with an algorithm involving three steps: split, predict and
update.

(i) Split
This stage involves splitting the signal into a set of samples s2l with
even indices and samples s2l +1 with odd indices. Each set contains
half as many samples as the input signal.
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(ii) Predict
Given the sets of coefficients with even indices at scale j, we predict
the values of the coefficients with odd indices at scale j − 1. For the
Haar wavelet, this step is

d j−1,l = s j,2l+1 − s j,2l . (5)

(iii) Update
The update step imposes that the coarser signal has the same average
value as the input signal:

s j−1,l = s j,2l + d j−1,l

2
. (6)

The cost of computing a wavelet transform with the lifting scheme
is proportional to the number of signal samples N . It compares
favourably with the fast Fourier transform whose cost is proportional
to N log N . Since computations are performed in-place, it is also
optimal in terms of memory requirements.

The Haar transform uses a predictor that eliminates zeroth-order
correlation (i.e. the average). The update operator preserves the
average in the coarser signal. It is possible to construct predict
and update operators that preserve higher order moments; such
a construction leads to the so-called CDF wavelets (Cohen et al.
1992). For example, CDF(2, 2) wavelets preserve the average and
first moment, meaning that detail or wavelet coefficients will be zero
if the signal is linear. These wavelets lead to a linear approximation
of the signal at different scales. Similarly, CDF(4, 4) wavelets will
lead to a cubic polynomial representation of the signal at different
scales. To implement these wavelet transforms, one simply needs to
change the lifting and filter coefficients that are used to implement
the predict and update operators. It is relatively easy to compute
them for any type of CDF wavelets (Fernández et al. 1996; Jensen &
la Cour-Harbo 2001). These coefficients are given by Uytterhoeven
et al. (1997) for CDF wavelets up to order 6.

4 L I F T I N G S C H E M E I N T H E
C U B E D S P H E R E

At this point, we have mapped a spherical surface to the six faces
of a cube. While it is easy to implement a lifting scheme in the
Cartesian domain associated to each chunk separately, doing so in-
troduces spurious artefacts along the edges of the chunks, as pointed
out by Simons et al. (2011). To overcome this problem, these authors
proposed an algorithm involving partially overlapping so-called ‘su-
perchunks’ that are obtained by extending the dimensions of the
normal chunks by 50 per cent along the ξ and η directions. While
this algorithm is a viable solution to implement discrete wavelet
transforms in the cubed sphere, we believe that using ‘superchunks’
leads to unnecessary and complicated bookkeeping. In addition,
the size of the ‘superchunks’ limits the maximum scale that can
be handled by the wavelet transform. Let us now introduce a new
algorithm to implement the lifting scheme on the cubed sphere that
avoids the use of these ‘superchunks’ and yet is free of any artefact
around the edges of the cube faces.

4.1 Principle

The principle of our algorithm is summarized in Fig. 3. The idea
is to perform 1-D wavelet transforms along three different paths,
named A, B and C in Fig. 3. Each path involves a sequence of four

Figure 3. Basic principle of the lifting scheme in the cubed sphere. One-
dimensional wavelet transforms are performed sequentially along paths A,
B and C and recombined to get a 2-D wavelet transform on the cubed sphere.

contiguous faces of the cube, following the order:

A → (I, I I, I I I, I V ),

B → (I, V, I I I, V I ),

C → (I I, V, I V, V I ).

(7)

Using conventions (1), the directions along which the wavelet trans-
form operates on each face are:

A → [+ξ (I ),+ξ (I I ), +ξ (I I I ),+ξ (I V )] ,

B → [+η (I ),+η (V ), −η (I I I ),+η (V I )] ,

C → [+η (I I ),−ξ (V ), −η (I V ), +ξ (V I )] .

(8)

To be more specific, for each path, we construct a 2-D domain from
the sequences of four contiguous faces given in (7) sampled along
the directions (8). For each path, we thus obtain a 2-D domain with
4 × 2N points along the X direction and 2N points along the Y direc-
tion. The 1-D wavelet transforms are then performed sequentially
along each of the 2N rows of the 2-D domain, using periodic bound-
ary conditions. These domains are mapped back to the cubed sphere
surface after completion of each wavelet transform on a particular
path. As can be seen from (8), each face of the cubed sphere is
sampled twice along the ξ and η directions after completion of the
wavelet transform along the three paths. The inverse wavelet trans-
form is simply obtained by applying all the operations in reverse
order. If all the wavelet coefficients are kept, the reconstruction is
exact. However, note that some wavelet coefficients encode the dif-
ference between scaling and wavelet coefficients when the wavelet
support cross some of the edges of our cubed sphere construction.
Since we are not interested in the physical interpretation of these
wavelet coefficients but rather in the possibility to exploit discrete
wavelets to compress global fields expressed on the surface of the
Earth, this is not an issue for our purpose.
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4.2 Compression

A wavelet transform leads to a representation of a volume of data
with a number of coefficients that is equal to the number of input
data. However, in most cases, a large number of wavelet coefficients
are very small and can thus be neglected without losing any signif-
icant amount of information. We will demonstrate in the following
that both sensitivity kernels and tomographic models indeed have
compact or sparse representations in the wavelet domain. This is the
basic motivation for formulating the tomographic inverse problem
in a discrete basis of orthogonal or bi-orthogonal wavelets.

With orthogonal wavelets such as those of Haar or Daubechies,
the wavelet transform preserves energy. For an input signal s of
length N , this property can be written

N∑
n=1

s2
n =

∑
n=1

w2
n, (9)

where the wn are the coefficients of the wavelet expansion of signal s
in the wavelet basis. This property is very convenient for quantizing
the compression in the wavelet domain. The compression algorithm
using the �2 norm involves three steps (Stollnitz et al. 1995):

(i) Compute the wavelet coefficients representing the input signal
in the wavelet basis.
(ii) Sort these coefficients in order of decreasing absolute values.

(iii) Determine the error as a function of the number of wavelet
coefficients kept for the reconstruction, taking the coefficients sorted
by decreasing absolute values.

If M is the number of wavelet coefficients kept for the recon-
struction, the reconstruction error is simply given by

E(M) =
N∑

n=M+1

w2
n, (10)

In contrast, bi-orthogonal wavelets such as the CDF wavelets do not
preserve energy. However, energy in the CDF wavelet coefficients
deviates by only a few percents so that in practice CDF wavelets can
be considered as nearly orthogonal. To give an idea of the accuracy
of this approximation, let us compare the exact reconstruction errors
with the approximate errors given by (10) on global tomographic
mantle model S40RTS (Ritsema et al. 2011) at 200 km depth with
CDF(2, 2) wavelets. This comparison (Fig. 4) shows that the ap-
proximate errors (solid black line) are very close to the exact errors
(solid circles), which demonstrates that we can indeed use (10) to
compute reconstruction errors for CDF wavelets with very good
accuracy.

For comparison, we have also computed the compression curve
obtained with the Daubechies wavelets D4. This wavelet has the
same number of vanishing moments as the CDF(2, 2) wavelets.
We note that while this orthogonal wavelet transform is more com-
plicated to implement than the bi-orthogonal CDF (2, 2) wavelet
because it involves two update steps instead of one in the case
of CDF(2, 2) wavelets, it clearly under-performs CDF(2, 2). In-
deed, the superiority of bi-orthogonal wavelets compared to or-
thogonal wavelets to compress signals is now well established (e.g.
Usevitch 2001), which more than compensates for their disadvan-
tage of not preserving energy. In fact, bi-orthogonal wavelets are
now the standard to compress images and are used, for instance,
in the JPEG2000 encoder. In the following, we will thus use bi-
orthogonal CDF wavelets and Haar wavelets.

Figure 4. Relative rms error as a function of the percentage of thresholded
wavelet coefficients used in the reconstruction of mantle model S40RTS
at 200 km depth with CDF(2, 2) (black line) and D4 (red line) wavelets
over four decomposition levels. The black circles show the exact rms error
computed in the spatial domain for the reconstructed model.

4.3 Example 1: topography of the Earth

Let us now illustrate our wavelet transform on the 2-D surface of the
sphere. We first consider the topography of the Earth, sampled with
a resolution of 5 arc minutes, taken from model etopo1 (Amante
& Eakins 2009). This data set is mapped on the cubed sphere with
210 × 210 elements on each face, for a total of 6 291 456 elements.
We consider the Haar, CDF(2, 2) and CDF(4, 4) bases up to five
scale levels. Fig. 5 shows the relative root-mean-square (rms) error
as a function of the percentage of coefficients kept for the recon-
struction using these three families of wavelets. The most striking
feature is that the three wavelet bases give very similar compression
curves. As in Schröder & Sweldens (1995), we interpret this obser-
vation by the fact that topography is not smooth. Consequently, the
smoothness of the wavelets has no influence on the compression
rate. However, the choice of the wavelet basis has a strong influence
on the visual quality of the reconstructed topography. Reconstruc-
tion with Haar wavelets after thresholding 96.47 per cent of the
wavelet coefficients (Fig. 6) is clearly contaminated by block arte-
facts. These artefacts are absent from the reconstruction obtained
with the CDF(4, 4) wavelets (Fig. 7). While the 5 per cent rms
error is very similar in both cases, the CDF(4, 4) wavelets lead
to visually better reconstructions, and with slightly fewer wavelet
coefficients (96.82 per cent). In any case, the three wavelets allow
us to compress topographic data by a factor of ∼10 with very little
loss of information, the error being around 3 per cent. The recon-
structed topography is free of any visible artefact around the edges
of the chunks, which suggests that our algorithm correctly solves
the problem of connecting the different faces of the cubed sphere
within the lifting scheme.

4.4 Example 2: tomographic model

We now turn to a more relevant case from the point of view of seis-
mic tomography by considering tomographic mantle model S40RTS
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Figure 5. Relative rms error as a function of the percentage of thresholded
wavelet coefficients used in the reconstruction of Earth topography with
Haar (black line), CDF(2, 2) (red line) and CDF(4, 4) (green line) over five
decomposition levels.

(Ritsema et al. 2011) at 200 km depth. Since this model is described
by spherical harmonics up to degree 40, it is straightforward to com-
pute the velocity perturbations at the exact locations of each node
in the cubed sphere. We use a grid scale N = 7, meaning that each
face of the cubed sphere contains 27 × 27 or 128 × 128 cells, and
perform the wavelet transforms up to level 4. In Fig. 8, we show
the relative rms error as a function of the percentage of wavelet co-
efficients kept for the reconstruction with the Haar, CDF(2, 2) and
CDF(4, 4) wavelets. The compression curves exhibit a very differ-
ent behaviour than previously observed in the case of topographic
data. We obtain increasingly higher compression rates when con-
sidering increasingly smoother wavelets. Only 5 per cent (820) of
the wavelet coefficients are required to reconstruct the tomographic
model with an error smaller than 2 per cent with CDF(4, 4). This
strongly suggests that, contrary to the case of topography, tomo-
graphic Earth models are smooth and highly compressible when
represented in bases of discrete wavelets. Obviously, the value of
the compression ratio is not very significant here, since it mainly
depends on the initial number of spatial nodes used to map the
tomographic model. Nevertheless, this example demonstrates that
discrete wavelets are competitive to represent smooth global fields
on the surface of the sphere, with performance levels comparable
to spherical harmonics.

5 WAV E L E T C O M P R E S S I O N I N T H E 3 - D
C U B E D S P H E R E

Extending the lifting scheme to the 3-D cubed sphere is straight-
forward. The additional depth or radial dimension can be seen as
a stack of cubed sphere surfaces similar to that shown in Fig. 2.
The depth dimension thus only adds a third Cartesian dimension
into the lifting scheme. Any type of wavelet can be used to com-
pute the wavelet expansion along that depth direction, and it may
differ from that used to compute the wavelet expansion on the
cubed sphere surfaces. However, the radial wavelet transform is

performed in a finite interval, bounded by the free surface at the top
and by the core–mantle boundary at the bottom, if one considers
the whole mantle and only that region. To preserve the vanishing
moments of the signal, it is thus necessary to use specific filter co-
efficients close to the boundaries (Jensen & la Cour-Harbo 2001;
Mallat 2009). While their computations can be quite involved in
the general case, it turns out that they are relatively simple for CDF
wavelets (Fernández et al. 1996), which is another good reason for
preferring these wavelets over other families such as Daubechies
wavelets. Handling the wavelet transform in the vicinity of depth
boundaries properly is important to avoid any artefact in the recon-
structed model.

5.1 Compression of 3-D tomographic models

Let us compute the compression curves for global mantle model
S40RTS from the surface down to the core–mantle boundary. In
our model extraction, we use a parametrization with 64 (26) points
along the vertical dimension. Note that our algorithm is general and
does not require the number of depth nodes to be a power of 2. For
the 2-D wavelet transforms on the cubed sphere surfaces, we use
the CDF(4, 4) wavelets, which we find to give the best compression
rates at 200 km depth (Fig. 8). Along the vertical direction, we
compare the Haar, CDF(2, 2) and CDF(4, 4) wavelets, computed up
to three scale levels. The resulting compression curves are shown in
Fig. 9. The first striking observation is that 3-D compression rates
are much larger than 2-D compression rates, whatever the wavelet
basis used to compress along the third dimension. This result was
expected because compression rates depend to first order on the
dimensionality of the problem. The behaviour of the compression
curves is similar to that observed in Fig. 8 which means that vertical
variations of seismic velocities in tomographic models, like lateral
variations, are smooth. This was expected, since model S40RTS is
expanded in the basis of spherical harmonics up to order 40 only.
Using the CDF(4, 4) wavelets, only 1.5 per cent of the wavelet
coefficients are necessary to reconstruct that tomographic model
with an error smaller than 2 per cent, a level at which no significant
reconstruction artefact is visible.

5.2 Compression of 3-D sensitivity kernels

Let us now examine the main ingredient of finite-frequency to-
mography: the finite-frequency traveltime sensitivity kernels. The
spectral-element method is widely used to model wave propagation
in 3-D Earth models at both regional and global scale (Komatitsch
et al. 2005; Peter et al. 2011). Combined with an adjoint wavefield
computation (Tromp et al. 2005, 2008), this approach allows us to
compute 3-D sensitivity kernels. While this approach is very costly
in terms of computations, it allows us to compute exact 3-D kernels
in a reference 3-D model. We compute the sensitivity kernel for the
direct P wave generated by the deep June 9, 1994 earthquake in
Bolivia, recorded by seismic station ANMO in Albuquerque, New
Mexico (USA), located at an epicentral distance of 61.12◦. We em-
ploy hexahedral elements to mesh the whole Earth, with 256 × 256
spectral elements used at the surface of each of the six chunks of
the cubed sphere. As is classical in SPECFEM3D_GLOBE, we use
a polynomial degree N = 4 to describe the wave field inside each
spectral element, and thus each such element contains (N + 1)3 =
125 local and non-evenly spaced Gauß–Lobatto–Legendre (GLL)
grid points. Our kernel calculation is thus accurate down to a min-
imum seismic period of about 17 s. Since the finite-element mesh

C© 2012 The Authors, GJI, 191, 1391–1402

Geophysical Journal International C© 2012 RAS



Discrete wavelet transform on the cubed-sphere 1397

Figure 6. Initial (top) and reconstructed (bottom) topography of the Earth with Haar wavelets using five decomposition levels. The reconstructed topography
has been obtained by thresholding 96.47 per cent of the wavelet coefficients, leading to a reconstruction error of 5 per cent.

created by SPECFEM3D_GLOBE is non-structured, i.e. it does not
consist of a regular grid whose topology could be described by a
topologically regular grid of indices (i, j, k) and each grid point
may have a valence (total number of neighbours) greater than 8,
we interpolate the spectral-element kernel onto such a topologically
regular grid of indices of size NX = 256 × NY = 256× NZ = 200.
Since the polynomial finite-element basis functions can be evalu-
ated exactly (analytically) at any point inside a finite element and
not only at its GLL grid points, this process leads to no error.

Fig. 10(a) shows a cross-section of the P kernel interpolated
and projected on the 3-D cubed sphere grid. Since the sensitivity
of the P wave is non-zero in a very small fraction of the cubed
sphere, the compression curves have to be computed with respect
to the number of significant kernel coefficients. We have arbitrarily

chosen to consider as non-zero all the coefficients that are larger than
10−4 times the maximum absolute value of the kernel coefficients
in the original cubed sphere grid. We find that the P wave kernel
shown in Fig. 10(a) is described by 709 843 non-zero coefficients,
which represents only about 1 per cent of the total number of cells
in the cubed sphere. The compression curves obtained with the
Haar, CDF(2, 2) and CDF(4, 4) wavelets up to four decomposition
levels are shown in Fig. 11. The reconstructed kernels obtained
with CDF(4, 4) for reconstruction errors of 1, 2, and 5 per cent, are
shown in Figs 10(b)–(d), respectively. The reconstruction kernel
with a tolerance error of 1 per cent is almost indistinguishable from
the initial kernel. For a reconstruction error of 2 per cent, some
artefacts become visible. They may be still acceptable to attain an
aggressive compression level, but they are probably too strong with
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Figure 7. Initial (top) and reconstructed (bottom) topography of the Earth with CDF(4, 4) wavelets using five decomposition levels. The reconstructed
topography has been obtained by thresholding 96.82 per cent of the wavelet coefficients, leading to a reconstruction error of 5 per cent.

a reconstruction error of 5 per cent. The reconstructed kernel with
1 per cent error is obtained with only 11 358 wavelet coefficients,
which represents about 1.6 per cent of the non-zero coefficients that
are necessary to describe the initial kernel in the spatial domain,
which is a very significant compression ratio. Fig. 12 shows the
compression curves for the Pdiff kernel of Fig. 1(a). They show a
very different behaviour. In this case, the best compression ratios
are obtained with the CDF(2, 2) wavelets, rather than with the
smoother CDF(4, 4) wavelets. Since this kernel corresponds to a
much shorter dominant period, the sensitivity is concentrated in
a very narrow tube, resulting in a far less smooth distribution of
sensitivity. Using CDF(2, 2) wavelets, 74 737 wavelet coefficients
are necessary to reconstruct this kernel with an error of 1 per cent.
This comparison clearly demonstrates that kernels having large first

Fresnel zone because of the long dominant period of the reference
wavelet are much more compressible than kernels corresponding
to shorter dominant periods. The benefit of using wavelets thus
increases with the dominant period of waves, when finite-frequency
effects become stronger.

While efficient methods to compute accurate 3-D sensitivity
kernels have been developed recently (Zhao & Chevrot 2011a,b;
Fuji et al. 2012), their use in massive inverse tomographic prob-
lems would typically involve storing hundred of thousands of 3-
D sensitivity kernels. This can represent very large volumes of
data, especially if a fine tomographic grid is considered, which is
necessary to describe their detailed structure as mentioned above.
Wavelet compression of sensitivity kernels in the cubed sphere
would drastically reduce the space required to store them, but also
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Figure 8. Relative rms error as a function of the percentage of thresholded
wavelet coefficients used in the reconstruction of mantle model S40RTS at
200 km depth with Haar (black line), CDF(2, 2) (red line) and CDF(4, 4)
(green line) wavelets over four decomposition levels.

Figure 9. Relative rms error as a function of the percentage of thresh-
olded wavelet coefficients used in the reconstruction of 3-D mantle model
S40RTS with Haar (black line), CDF(2, 2) (red line) and CDF(4, 4) (green
line) wavelet transforms over three decomposition levels along the vertical
dimension. In the three cases, the CDF(4, 4) wavelets over four decompo-
sition levels have been used for the 2-D wavelet transforms on the cubed
sphere surfaces. For comparison, we also plot the compression curve ob-
tained with the CDF(4, 4) wavelets on model S40RTS at 200 km depth
(dashed green line).

simplify considerably their distribution to the scientific community
in the form of pre-computed databases. This is another important
practical problem, since the computation of 3-D kernels requires
significant computational resources, and is typically performed on

national supercomputing resources, in a remote computing centre.
It is then necessary to transfer these kernels back to the laboratory
where they can be incorporated in the construction of a massive
tomographic inverse problem. While this is easily done for a few
kernels computed in a fine 3-D grid, the large size of the files
containing these kernels may considerable complicate and slow
down the process. While discrete wavelets in the cubed sphere are
clearly the solution of choice to compress sensitivity kernels, it
would be necessary to design an efficient encoder and define a new
data format such as the JPEG2000 standard encoder for 2-D images
(e.g. Taubman & Marcellin 2001). So far, we have not considered
this problem, which is beyond the scope of this study.

6 I M P L I C AT I O N S F O R T O M O G R A P H I C
I N V E R S I O N S I N T H E WAV E L E T
D O M A I N

A canonical tomographic problem consists in finding the vector
model m expanded in a spherical grid that minimizes the misfit
with respect to the data vector d:

S(m) = (G · m − d)t C−1
d (G · m − d) + mt C−1

m m, (11)

where Cd and Cm are, respectively, the data and model covari-
ance matrices, and each line of the sensitivity matrix G contains a
3-D sensitivity kernel. To be more specific, an element Gij of the
sensitivity matrix represents the partial derivative of the traveltime
of path i to a velocity perturbation in grid cell j. This minimization
problem can be recast into the linear inverse problem:(

C−1/2
d G

C−1/2
m

)
m =

(
C−1/2

d d

0

)
. (12)

As already stated, the basic motivation for using discrete wavelet
bases to parametrize tomographic models relies on the compact
representation that can be achieved in the wavelet domain for both
3-D sensitivity kernels and tomographic problems. Indeed, the tests
presented in the previous section demonstrate that the number of
coefficients necessary to describe sensitivity kernels can be reduced
by almost two orders of magnitude without losing any significant
amount of information. This result is important because it will allow
one to dramatically reduce the number of non-zero elements in the
sensitivity matrix G. Formulating (12) into the wavelet domain leads
to(

C−1/2
d Gw

C−1/2
w

)
w =

(
C−1/2

d d

0

)
, (13)

where the lines of Gw now contain the wavelet coefficients of the 3-D
sensitivity kernels, and the new model vector w contains the wavelet
coefficients of m. A popular technique to solve (13) is the LSQR
algorithm (Paige & Saunders 1982) which can easily be adapted to
exploit the sparsity of Gw . Since this algorithm only requires com-
puting matrix–vector products involving Gw or Gt

w , it can easily be
adapted to sparse matrix representations to perform the computa-
tions with the non-zero elements of these matrices only. Solving (13)
instead of (12) can be done for a fraction of the cost in terms of both
memory and CPU time. Since finite-frequency theory predicts that
sensitivity is broadly distributed around the geometrical ray, it leads
to much larger tomographic problems than those classically con-
sidered in the framework of ray theory. Working within the wavelet
domain reduces the finite-frequency tomographic problem to a size
comparable to a ray tomographic problem. Therefore, multi-scale

C© 2012 The Authors, GJI, 191, 1391–1402

Geophysical Journal International C© 2012 RAS



1400 S. Chevrot, R. Martin and D. Komatitsch

Figure 10. Sensitivity kernel for the traveltime of a 20 s P wave recorded at an epicentral distance of 61.12◦ projected in the cubed sphere with 256 × 256
elements on the surface and 200 elements along the radial direction (a). Also shown are the reconstructed kernels using CDF(4, 4) wavelets for reconstruction
errors of 1 per cent (b), 2 per cent (c) and 5 per cent (d).

Figure 11. Relative rms error as a function of the percentage of thresholded
wavelet coefficients used in the reconstruction of the P kernel shown in
Fig. 10(a) with Haar (black line), CDF(2, 2) (red line) and CDF(4,4) (green
line) wavelets over four decomposition levels.

tomography will allow one to account for finite-frequency effects at
no additional cost compared to classical ray tomography.

The sparsity of tomographic models can also be exploited within
the recently developed mathematical theory of compressed sensing
(Donoho 2006; Tsaig & Donoho 2006; Lustig et al. 2007). In this
approach, a �1 norm is used to damp the model wavelet coefficient

Figure 12. Relative rms error as a function of the percentage of thresholded
wavelet coefficients used in the reconstruction of the Pdiff kernel shown in
Fig. 1(a) with Haar (black line), CDF(2, 2) (red line) and CDF(4, 4) (green
line) wavelets over four decomposition levels.

and we need to solve a non-linear inverse problem to find the model
w that minimizes the new misfit function

S2(m) = ||Gw · w − d||22 + λ||w||1. (14)

The motivation to use the �1 norm lies in the fact that it will
tend to favour solutions with a small number of large significant
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coefficients, in contrast to the usual �2 norm that will favour a large
number of small coefficients. If the model is sparse, this makes
its reconstruction more robust. Different algorithms have been pro-
posed to find the minimum of (14) (e.g. Loris & Verhoeven 2012).
These algorithm requires computing the gradient of the data misfit
at a number of iterations which, like in the LSQR algorithm, only
involves computing matrice–vector products. Using a sparse rep-
resentation of matrix Gw , these algorithms can be made extremely
efficient. Therefore, the �1 regularization can be used at almost no
extra cost compared to the �2 norm. This new regularization scheme
was first tested on simple tomographic inverse problems by Loris
et al. (2007), and initially proved promising, but later studies on
more realistic models (Loris et al. 2010) found little improvement
over the classical �2 norm. Other types of non-linear regularization
methods are described in Loris & Verhoeven (2012).

We should emphasize here a fundamental difference with the
resolution of the inverse problem as envisioned in Simons et al.
(2011). Indeed, Simons et al. (2011) solve the tomographic problem
in the spatial domain, as in (12), but regularize the �1 norm of
the model wavelet transform. Therefore, they do not exploit the
sparsity of both 3-D sensitivity kernels and tomographic models in
the resolution of the tomographic problem. It is interesting to note,
however, that in the case of ray tomography, matrix G is sparser
than Gw, because in ray theory, sensitivity is concentrated along the
singularity of the ray, while it is widely distributed over different
scaling and wavelet coefficients at different scales in Gw. Working
in the spatial domain is thus more efficient in the case of ray theory,
but it is more efficient to work in the wavelet domain in the case
of finite-frequency theory. However, we would argue that it may
still be interesting to solve a ray theory tomographic problem in the
wavelet domain. Indeed, redistribution of sensitivity over different
scales may improve the quality of the reconstructed tomographic
model. This also opens new perspectives to improve ray-theory
global tomographic models that we plan to explore in future work.

7 C O N C LU S I O N S

We have introduced an extension of the lifting scheme in the
cubed sphere that allows one to compute fast wavelet transforms in
2-D or 3-D spherical domains. The computational grid is obtained
by a tessellation of the sphere with six chunks, within which one de-
fines Cartesian coordinates. Mapping the radial dimension simply
consists in considering stacks of such constructions. The algorithm
is simple and flexible and can be implemented with any family of
orthogonal or bi-orthogonal wavelets. However, our experiments
suggest that CDF(4, 4) represents an excellent trade-off between
efficiency, ease of implementation and capacity to obtain a sparse
representation of both 3-D finite-frequency kernels and tomographic
models in the wavelet domain. These wavelets are very well suited to
represent the whole spectrum of seismic heterogeneities, dominated
by longer wavelengths (Su & Dziewonski 1991,1992; Chevrot et al.
1998; Simons et al. 2011) while retaining the capacity to describe
the smaller scale structures that are heavily smoothed in current
global tomographic models (Gudmundsson et al. 1990; Margerin
& Nolet 2003; Garcia et al. 2009). Using these wavelets, the size
of the sensitivity matrix can be reduced by almost two orders of
magnitude without losing any significant amount of information
regarding finite-frequency sensitivity to structural details.

Ultimately, resolution in tomographic models of the Earth will
still be limited by the level of noise in seismic observables and
by uneven spatial coverage. However, parametrizing tomographic
models with wavelets keeps the inverse problem tractable even in a

very fine tomographic grid. Another advantage of parametrizing to-
mographic models with wavelets is that the grid can easily be refined
in a sub-domain, in which the wavelet expansion can be continued
towards shorter scales. It is thus straightforward to embed a regional
tomographic problem into a global tomographic problem in order to
mitigate the leakage of unmodelled structural heterogeneities inside
the regional model. Finally, a wavelet parametrization offers versa-
tility and flexibility. When the resolution potential of a tomographic
data set allows for resolving fine structures in a given region, the
quality of the inversion will not be degraded because of other re-
gions having much lower resolution. In other words, regularization
of the inverse tomographic problem will not penalize resolution in
the best sampled parts of the model, which is a major drawback in
current classical tomographic approaches.
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Schröder, P. & Sweldens, W., 1995. Spherical wavelets: efficiently represent-
ing functions on the sphere, in Proceedings of the 22nd Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH), ACM,
New York, NY.

Simons, F.J. et al., 2011. Solving or resolving global tomographic models
with spherical wavelets, and the scale and sparsity of seismic heterogene-
ity, Geophys. J. Int., 187, 969–988.

Spetzler, J. & Trampert, J., 2003. Implementing spectral leakage corrections
in global surface wave tomography, Geophys. J. Int., 155, 532–538.

Stollnitz, E.J., deRose, T.D. & Salesin, D.H., 1995. Wavelets for com-
puter graphics: a primer, part 1, IEEE Comput. Graph. Appl., 15(3),
76–86.

Su, W.J. & Dziewonski, A.M., 1991. Predominance of long wavelength
heterogeneity in the mantle, Nature, 352, 121–126.

Su, W.J. & Dziewonski, A.M., 1992. On the scale of mantle heterogeneity,
Phys. Earth planet. Inter., 74, 29–54.

Sweldens, W., 1995. The lifting scheme: a new philosophy in biorthogonal
wavelet constructions, in Wavelet Applications in Signal and Image Pro-
cessing III, Proc. SPIE 2569, pp. 68–79, eds Laine, A.F. & Unser, M.,
SPIE, Denver, CO.
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