
Geophys. J. Int. (2010) 182, 389–402 doi: 10.1111/j.1365-246X.2010.04616.x

G
JI

S
ei

sm
ol

og
y

Accelerating a three-dimensional finite-difference wave propagation
code using GPU graphics cards

David Michéa1 and Dimitri Komatitsch2,3

1Bureau de Recherches Géologiques et Minières, 3 avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France
2Université de Pau et des Pays de l’Adour, CNRS & INRIA Magique-3D, Laboratoire de Modélisation et d’Imagerie en Géosciences UMR 5212,
Avenue de l’Université, 64013 Pau Cedex, France. E-mail: dimitri.komatitsch@univ-pau.fr
3Institut universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France

Accepted 2010 April 6. Received 2010 April 2; in original form 2009 December 2

S U M M A R Y
We accelerate a 3-D finite-difference in the time domain wave propagation code by a factor
between about 20 and 60 compared to a serial implementation using graphics processing unit
computing on NVIDIA graphics cards with the CUDA programming language. We describe
the implementation of the code in CUDA to simulate the propagation of seismic waves in a
heterogeneous elastic medium. We also implement convolution perfectly matched layers on
the graphics cards to efficiently absorb outgoing waves on the fictitious edges of the grid. We
show that the code that runs on a graphics card gives the expected results by comparing our
results to those obtained by running the same simulation on a classical processor core. The
methodology that we present can be used for Maxwell’s equations as well because their form
is similar to that of the seismic wave equation written in velocity vector and stress tensor.

Key words: Numerical solutions; Numerical approximations and analysis; Earthquake
ground motions; Computational seismology; Wave propagation.

1 I N T RO D U C T I O N

Finite-difference (FD) techniques in the time domain (FDTD) are
widely used to solve wave equations such as Maxwell’s equa-
tions (Yee 1966) or the seismic wave equation (Alterman & Karal
1968; Madariaga 1976; Virieux 1986), and have been used to
solve Navier–Stokes’ equations as well (Chorin 1968). For a re-
cent thorough review on FD applied to the seismic wave equation,
see e.g. Moczo et al. (2007). When more geometrical flexibility is
needed for instance to handle geometrically complex models other
techniques such as a pseudo-spectral technique (e.g. Carcione &
Wang 1993; Komatitsch et al. 1996), a boundary-element method
(e.g. Kawase 1988; Vai et al. 1999), a spectral-element method
(e.g. Liu et al. 2004; Chaljub et al. 2007; Tromp et al. 2008) or a
discontinuous Galerkin technique (e.g. Reed & Hill 1973; Falk &
Richter 1999; Cockburn et al. 2000; Giraldo et al. 2002; Monk &
Richter 2005; Bernacki et al. 2006; Dumbser & Käser 2006; Grote
et al. 2006) are sometimes needed, but because of its simplicity FD
remains very widely used.

FD is often used in conjunction with a perfectly matched layer
(PML) to absorb waves on the artificial edges of the numerical grid
to mimic an infinite or semi-infinite medium [see e.g. Bérenger
(1994) for Maxwell’s equations and Hastings et al. (1996), Chew
& Liu (1996) and Collino & Tsogka (2001) for the seismic wave
equation]; or even better a Convolution PML (CPML) can be used
to improve the behaviour of the discrete PML for waves imping-
ing the artificial edges of the grid at grazing incidence (see e.g.
Roden & Gedney (2000) for CPML for Maxwell’s equations, Festa

& Vilotte (2005), Festa et al. (2005) for split CPMLs for seis-
mic waves and Martin et al. (2005), Martin & Komatitsch (2006),
Komatitsch & Martin (2007), Drossaert & Giannopoulos (2007),
Martin et al. (2008a,b), Martin & Komatitsch (2009) and Kristek
et al. (2009) for unsplit CPMLs for seismic waves. More recently
a formulation of the unsplit CPML that can easily be extended to
higher-order time schemes, called the auxiliary differential equa-
tion PML (ADE-PML), has been introduced by Gedney & Zhao
(2010) for Maxwell’s equations and by Martin et al. (2010) for
the seismic wave equation. An improved sponge layer, improperly
called the split Multiaxial PML (M-PML), has been suggested by
Meza-Fajardo & Papageorgiou (2008), but the perfectly matched
character of Bérenger (1994) is lost because of the coupling intro-
duced between derivatives along more than one grid axis.

In recent years, computing on graphics cards [also known as
‘graphics processing unit (GPU) computing’] has been used to ac-
celerate non-graphical applications with respect to calculations per-
formed on a classical central processing unit (CPU) processor core
(see e.g. Owens et al. 2007). A number of physical problems have
been solved, e.g. molecular dynamics simulations (Yang et al. 2007;
Anderson et al. 2008), fluid dynamics simulations (Brandvik &
Pullan 2007; Elsen et al. 2008), or astrophysical calculations
(Nyland et al. 2007). Regarding FD, several applications have
been ported to GPUs as early as 2004 (Krakiwsky et al. 2004a,b;
Baron et al. 2005; Humphrey et al. 2006; Adams et al. 2007;
Abdelkhalek 2007; Inman et al. 2007; Price et al. 2007; Balevic
et al. 2008a,b; Valcarce et al. 2008; Inman & Elsherbeni 2008;
Micikevicius 2009; Abdelkhalek et al. 2009). Some of the other

C© 2010 The Authors 389
Journal compilation C© 2010 RAS

Geophysical Journal International

390 D. Michéa and D. Komatitsch

numerical techniques mentioned above for seismic wave propaga-
tion have recently been successfully ported to GPUs, for instance
the spectral-element method by Komatitsch et al. (2009) in the case
of one GPU and by Komatitsch et al. (2010a,b) in the case of a clus-
ter of many GPUs used in parallel, and the discontinuous Galerkin
method by Klöckner et al. (2009).

GPU programming on NVIDIA graphics cards has become
significantly easier with the introduction at the end of 2006 of
the CUDA programming language (NVIDIA Corporation 2009a),
which is relatively easy to learn because its syntax is similar to C.
Regarding FD for seismic reverse time migration in the case of an
acoustic medium with constant density, Abdelkhalek (2007) and
Micikevicius (2009) (from NVIDIA corporation, the developers of
GPU hardware and of CUDA) have recently introduced optimized
implementations. Abdelkhalek et al. (2009) extended it to the acous-
tic case with heterogeneous density. In this article, we use CUDA
to solve the seismic wave equation in the more complex fully het-
erogeneous (including for density) elastic case on several GPUs
used in parallel. We improve upon Micikevicius (2009) by apply-
ing his methodology to the full elastic wave equation and to a real
3-D model, by adding CPML absorbing layers, by making access
to these CPML arrays faster on the GPU by resorting to so-called
‘CUDA texture fetching’ to access them and overcome the limited
amount of shared memory that is available on the GPU hardware,
and finally by using message passing (MPI, see e.g. Gropp et al.
1994) to use several GPUs in parallel efficiently.

2 T H E S E I S M I C WAV E E Q UAT I O N A N D
A C L A S S I C A L F I N I T E - D I F F E R E N C E
D I S C R E T I Z AT I O N

We consider a linear isotropic elastic rheology for the solid medium,
and therefore the seismic wave equation can be written in the strong,
that is, differential, form

ρü = ∇ · σ + f ,

σ = c : ε ,

ε = 1

2
[∇u + (∇u)T], (1)

where u denotes the displacement vector, σ the symmetric, second-
order stress tensor, ε the symmetric, second-order strain tensor, c
the fourth-order stiffness tensor, ρ the density and f an external
source force. The double tensor contraction operation is denoted
by a colon, a superscript T denotes the transpose, and a dot over a
symbol indicates time differentiation. The physical domain of the
model is denoted by � and its outer boundary by �. The material
properties of the solid, C and ρ, can be spatially heterogeneous.

In the classical velocity–stress formulation that is used in most
FD implementations (e.g. Collino & Tsogka 2001; Moczo et al.
2007), one rewrites eq. (1) as a first-order system whose unknowns
are the velocity vector v and the stress tensor σ

ρ∂t v = ∇ · σ ,

∂tσ = c :∇v. (2)

The boundary condition at the free surface of the medium is that
the traction vector τ must be zero everywhere at the surface �, that
is,

τ = σ · n̂ = 0, (3)

where n̂ is the outgoing normal to the surface �.

Figure 1. Elementary grid cell of the 3-D staggered spatial finite-difference
method based on Madariaga (1976) used classically to discretize the equa-
tions of elastodynamics, using the components of the velocity vector v and
of the symmetric stress tensor σ as unknowns. The unknowns are defined
at gridpoints or half way between gridpoints depending on the component
and of the grid axis considered. For Maxwell’s equations a similar staggered
grid was introduced by Yee (1966).

Discretization of the first-order system (2) together with the free
surface boundary condition (3) is then classically performed based
on the staggered grid of Fig. 1, which was introduced for Maxwell’s
equations by Yee (1966) and for the seismic wave equation by
Madariaga (1976). Our goal here is not to describe in detail the
classical finite-difference discretization of the seismic wave equa-
tion written in velocity vector and stress tensor because such a
description can be found in numerous textbooks and articles (see
e.g. Collino & Tsogka 2001, and see Moczo et al. 2007 for a thor-
ough review). Let us just recall that in the finite-difference method
partial spatial derivatives are approximated by discrete operators
involving differences between adjacent gridpoints, as in the stencil
of Fig. 2, which represents the fourth-order spatial operator that we
use in our ‘ONDES3D’ software package (Aochi & Douglas 2006).
As an example, the spatial first derivative ∂xu of a given u(x , y,
z, t) component of a field along the x-axis of a regular 3-D grid is
approximated based upon a Taylor expansion

∂x u

(
x + �x

2
, y, z, t

)

� 9

8

u(x + �x, y, z, t) − u(x, y, z, t)

�x

− 1

24

u(x + 2�x, y, z, t) − u(x − �x, y, z, t)

�x
, (4)

where �x is the size of an elementary grid cell along the x-axis,
which means that at a given time t the derivative can be computed

C© 2010 The Authors, GJI, 182, 389–402

Journal compilation C© 2010 RAS

Accelerating a wave propagation code using GPUs 391

Figure 2. Illustration of the spatial stencil of the 3-D fourth-order finite-
difference operator used to approximate spatial derivatives by a discrete
difference between adjacent gridpoints, after discretization of the model in
a grid with elementary grid cells as in Fig. 1.

numerically by using

∂x u
(
i + 1

2 , j, k
) � 9

8

u(i + 1, j, k) − u(i, j, k)

�x

− 1

24
.
u(i + 2, j, k) − u(i − 1, j, k)

�x
. (5)

In practice people often resort to optimized spatial coefficients de-
signed to minimize overall numerical dispersion, for instance those
of Holberg (1987), but this has no influence on the GPU imple-
mentation discussed herein. At the free surface of the model, in the
vertical direction we switch to a second-order spatial operator in
order to be able to implement the free surface condition, as done
classically (see e.g. Moczo et al. 2007). Time evolution is performed
based on a staggered central finite-difference approximation, as in
Virieux (1986).

In regional or local seismology in many cases one is interested
in simulating a semi-infinite medium with a free upper surface.
All the edges of the grid except the top edge are then artificial and
outgoing waves should be absorbed there in order to simulate a semi-
infinite medium. We use the unsplit CPML technique of Komatitsch
& Martin (2007), also analysed by Kristek et al. (2009), which
consists in modifying each spatial derivative along the direction
perpendicular to the absorbing layer, say x, in the following fashion:

∂x̃ = 1

κx
∂x + ψx , (6)

where ψ x is a memory variable whose time evolution is governed
at each time step by an additional equation

ψn
x = bxψ

n−1
x + ax (∂x)n− 1

2 . (7)

This implies that significantly more equations need to be solved
in the PML regions, in particular near the corners of the 3-D grid,
because contributions coming from the PML layers located along x,
y and z are summed there and one memory variable and thus a time
evolution equation is needed for each; but this is acceptable because
the PML regions are small compared to the rest of the model.

Coefficients ax and bx in the PML, which do not vary with time,
are given by

bx = e−(dx /κx +αx)�t (8)

and

ax = dx

κx (dx + κxαx)
(bx − 1), (9)

where κx ≥ 1, dx ≥ 0 and αx ≥ 0 are three real damping coefficients.
We refer the reader to Komatitsch & Martin (2007) for more details.
Note that if a higher-order time scheme were used, one should resort
to an auxiliary differential equation (ADE) implementation of the
PML optimized at grazing incidence instead of a convolutional
implementation, as introduced by Martin et al. (2010).

3 I M P L E M E N TAT I O N O N G R A P H I C S
C A R D S U S I N G C U DA

Let us first summarize a few key concepts regarding programming
GPU graphics cards with CUDA, and then see how to port our
elastic wave propagation code to it.

3.1 A brief summary of GPU programming concepts

For readers not familiar with details of CUDA or GPU program-
ming, let us briefly explain the programming model that supports
the fine-grained parallel architecture of NVIDIA GPUs. Consider-
ing the potentially very high performance increase that one may get
for a wide range of applications by porting them to GPUs, it is of
interest to become familiar with these new programming concepts,
which are significantly different from classical serial programming
in Fortran or C on a CPU. In the glossary of Table 1 we briefly
explain some of the terms most commonly used in the context of
graphics cards and CUDA and that are used several times in the rest
of the article. For more details the reader is referred to the CUDA
documentation (NVIDIA Corporation 2009a) and GPU/CUDA con-
ference tutorials (see e.g. http://gpgpu.org/developer).

The official CUDA documentation (NVIDIA Corporation 2009a)
and publications related to CUDA (see Section 1) often use varying
terminologies, in particular when defining the notion of a computing
‘core’ on GPUs. In this article, we identify each so-called ‘multipro-
cessor’ of a GPU with a ‘Single Instruction, Multiple Data (SIMD)
core’. The individual thread processors within each multiprocessor,
which are called ‘streaming processor cores’ or ‘CUDA cores’ in
NVIDIA literature, share the instruction stream and can therefore
be viewed as arithmetic logic units (ALUs).

The code that gets executed on the GPU is called a calculation
‘kernel’. This kernel is launched on a grid of thread blocks. Threads
inside the same block can be synchronized, but no synchronization
is possible between blocks. The different blocks are placed on the
different multiprocessors by a scheduler that removes stalled blocks
waiting for input to or output from memory and launches thread
blocks that are ready for execution. The same physical multiproces-
sor can execute several blocks, and the order in which blocks are
assigned to multiprocessors is undefined. There is always an im-
plicit synchronization between kernel calls on dependent data (i.e.
when some of the output of one kernel is used as input to the next).

The memory available on the graphics card is distributed between
threads and thread blocks. Each thread has its own registers, whose
access is extremely fast but whose total number is limited. Each
thread block can use a small amount of low-latency on-chip ‘shared
memory’, which can be read from and written to by all the threads

C© 2010 The Authors, GJI, 182, 389–402

Journal compilation C© 2010 RAS

392 D. Michéa and D. Komatitsch

Table 1. Glossary of some terms used in CUDA programming and in this article.

Term Explanation

Host The Central Processing Unit (CPU), i.e. a classical processor (in our
case, one core of a multicore processor)

Device The Graphics Processing Unit (GPU), i.e. the graphics card.
Kernel A function executed in parallel on the device
Thread block A set of threads with common access to a shared memory area—all the

threads within a block can be synchronized
Grid A set of thread blocks—a kernel is executed on a grid of thread blocks
Warp A group of 32 threads executed concurrently on a multiprocessor of the GPU
Multiprocessor The ratio of the actual number of active warps on a multiprocessor to the
occupancy maximum number of active warps allowed
Global memory Uncached off-chip DRAM memory
Shared memory High-performance on-chip register memory, limited to 16 kB on the hardware we use
Constant memory A read-only region of device memory with faster access times and a cache mechanism
Coalesced memory Simultaneous GPU global memory accesses coalesced into a single contiguous, aligned
accesses memory access at the scope of a half-warp

Note: For more details the reader is referred to the CUDA documentation NVIDIA Corporation (2009a) and
GPU/CUDA conference tutorials (see e.g. http://gpgpu.org/developer).

of the same block. This is an efficient way for threads within one
block to exchange data. Read/write access to it is always very fast,
however the cost of some access patterns is higher than others.

In numerical techniques such as the finite-difference method that
compute values on a grid of mesh points, in a classical programming
model on a CPU calculations are performed sequentially for each
point by the same thread. The programming model on a GPU is
very different: the calculations are going to be done in parallel by
an extremely high number of very lightweight threads, typically
hundreds of thousands. Often in an FD code one decides to use one
thread per mesh point. As seen above, in CUDA these threads are
grouped in thread blocks, and these blocks are grouped in a grid of
blocks. The threads within one block are assigned to consecutive
so-called ‘warps’ of 32 threads.

Central memory (called ‘global memory’) is common to all the
threads and is the place where one stores arrays and data that need
to be shared between different kernels. In current GPU hardware it
does not possess any cache mechanism and input/output to it is very
slow (�500–600 clock cycles). For read-only accesses, global mem-
ory can be read through a so-called ‘texture fetching’ mechanism
that has a cache.

The threads of a given block are executed on the vectorial pro-
cessors (the multiprocessors) of the graphics card by groups of 16,
called a ‘half-warp’. Accesses to global memory can be ‘coalesced’
automatically by the GPU hardware into, in the best case, a single,
large and efficient memory transaction per half-warp of 16 threads.
Whether this happens depends on a number of relatively severe re-
strictions on the memory access pattern and on data alignment (see
e.g. Bell & Garland 2009); in such a case, memory performance is
maximized.

If the code that is run by the 16 threads of a half-warp is the same
and if the data that they need can be accessed in a coalesced fashion,
the half-warp is executed fully in parallel in one pass, leading to
optimal performance. Otherwise the half-warp is called ‘divergent’
and is cut automatically by the system into non-diverging pieces
that are executed one after the other, that is, serialized, leading to
reduced performance.

Each multiprocessor can handle 512 threads simultaneously,
switching to the next available warp when the currently executed
one stalls, for instance because it is waiting for input from or out-
put to memory. These switches are extremely fast, with almost no
overhead, because they are performed directly by the hardware of

the graphics card and not by software. The actual number of thread
blocks that run simultaneously is determined by the amount of re-
sources used, in particular registers and shared memory. This is the
way a GPU maximizes the utilization of its multiprocessors and
thus the overall execution speed.

The key issue to get an efficient code on a GPU is to manage to
overlap the huge access time (latency time) to data stored in memory
by always having blocks ready to be computed while other blocks
are waiting for input from or output to memory. This implies having
a large-enough number of blocks to schedule, and also minimizing
accesses to global memory, in particular redundant reads inside a
block of threads, by loading these data once to shared memory, from
which all the threads of a thread block will then be able to read them
in a much faster fashion.

One of the main drawbacks of current GPUs is the fact that the
amount of shared memory and the number of registers is drastically
limited. This limits the number of threads and of thread blocks that
can run simultaneously on the graphics card. The ratio between
the number of thread blocks that run simultaneously in a given
kernel and the theoretical maximum number of thread blocks that
the hardware could in principle run simultaneously is called the
‘multiprocessor occupancy’ or simply the ‘occupancy’ in the CUDA
literature. It can be viewed as the fraction of the theoretical peak
computation power of the graphics card that is really used by the
application. When porting an application to a GPU, it is therefore
important to try to maximize the occupancy by minimizing the
resources used by the threads and thread blocks.

However in practice it can be difficult to reach high occupancy
in some parts of a complex application because often a signifi-
cant amount of shared memory must be used, and it may be very
difficult to reduce the total number of registers used because it is
defined mostly by the CUDA compiler itself without any control
on it from the user. This issue is not specific to GPU computing:
on classical processors there is often a large difference between the
theoretical peak performance and the sustained performance of the
running application, that is, only a small part of the theoretical peak
computational power is actually used. Let us also note that in many
applications the performance of the code is limited by the bandwidth
of accesses to memory and not by the speed of the calculations, for
instance in applications in which only a small or medium number of
calculations is performed on each value read from memory, which is
a common case. Such codes are called ‘bandwidth bound’. In such

C© 2010 The Authors, GJI, 182, 389–402

Journal compilation C© 2010 RAS

Accelerating a wave propagation code using GPUs 393

a case, trying to increase occupancy in a CUDA kernel might be
counterproductive because if more blocks can be executed simulta-
neously then there is more latency in memory accesses that must be
overlapped, which is difficult. Thus, and contrary to what people do
when programming classical CPUs, one can often increase perfor-
mance on a GPU by purposely recomputing things that are needed
several times in an algorithm rather than storing them in memory,
in order to increase the calculations/memory accesses ratio.

3.2 Porting our elastic wave propagation
algorithm to a GPU

The main difficulty when implementing a finite-difference code on
a GPU comes from the stencil of Fig. 2. For a fourth-order spatial
operator, the thread that handles the calculation of point (i , j , k)
needs to know the fields (and therefore access the arrays) at point
(i , j , k) but also (i + 1, j , k), (i + 2, j , k), (i − 1, j , k), (i − 2,
j , k), (i , j + 1, k) and so on, thus of the point that it handles and
of 12 neighbouring points. This implies that 13 accesses to global
memory are needed on the GPU to handle each gridpoint, which is
a very high value, keeping in mind that access to global memory is
very slow as seen above.

However because threads that belong to the same block of threads
can access common values using much faster shared memory, it is
possible to significantly reduce this number of memory accesses
per gridpoint and thus drastically improve performance. Since we
use an explicit time scheme, values computed in the whole grid at a
given time t depend only on past values already computed and are
therefore independent. We can thus implement spatial parallelism
by computing many gridpoints in parallel. We have seen above
that because GPUs require massive multithreading based on very

lightweight threads, we will use a different thread to handle each
gridpoint. We have also seen that, in CUDA, threads are grouped
in thread blocks. The most intuitive approach is to use a cubic
distribution of threads (Fig. 3a). This way, each thread will load the
values of the arrays at the gridpoint it handles from global memory
to shared memory, and thus inside a given block of threads many
neighbouring points of the finite-difference stencil of Fig. 2 are
automatically loaded to shared memory by the other threads of the
block because with such a cubic distribution of threads by definition
they handle these neighbouring points. However, for points located
on the edges of the block, some of the neighbouring points do not
belong to the block but rather to an external ‘halo’ drawn in Fig. 3(a).
These halo points also need to be loaded to shared memory, which
results in a small number of additional reads from global memory
for some of the threads of the thread block. The intuitive approach
of using a cubic distribution of threads allows one to reduce the
ratio between the number of gridpoints and the size of the halo, as
illustrated in Fig. 3(a). Unfortunately, in practice on current GPUs
there is not enough shared memory to allow one to use 3-D blocks
large enough to sufficiently reduce this ratio, and therefore this
approach cannot be efficiently implemented.

We therefore turn to a more efficient 2-D approach, introduced
by Micikevicius (2009), which uses a sliding computation window.
This idea is somewhat similar to the approach of Graves (1996)
to run large 3-D FD simulations on a computer that does not have
enough memory by storing parts of the grid to external storage, for
instance a hard drive, a technique known in computer science as
‘out of core’ storage.

Instead of subdividing the 3-D volume into 3-D subvolumes with
halos and distributing them along the grid of thread blocks for a one
pass calculation, as done in the 3-D approach, the 2-D approach

Figure 3. Left-hand panel: 3-D block of 8 × 8 × 8 = 512 gridpoints (dark grey) and its ‘halo’ of 6 × 8 × 8 × 2 = 768 gridpoints (light grey) that need to be
loaded from global memory to shared memory to implement a finite-difference calculation on the GPU by a block of 512 CUDA threads based on the stencil
of Fig. 2 and on an intuitive decomposition into a cubic distribution of threads. Right-hand panel: 2-D tile of 8 × 16 = 128 gridpoints (dark grey) and its 2-D
‘halo’ of 8 × 2 × 2 + 16 × 2 × 2 = 96 gridpoints (light grey) that need to be loaded from global memory to shared memory by this block of 128 threads
when the more efficient 2-D approach introduced by Micikevicius (2009) is used. We have not drawn the additional halo of 8 × 16 × 2 × 2 = 512 gridpoints
located in front and behind this tile because it does not need to be stored in shared memory, it can much more efficiently be stored in registers organized in a
pipeline fashion, taking advantage of the fact that access to these registers is extremely fast.

C© 2010 The Authors, GJI, 182, 389–402

Journal compilation C© 2010 RAS

394 D. Michéa and D. Komatitsch

consists in tiling a 2-D cut plane of the volume (for instance, in the
X and Y directions of the finite-difference grid) with 2-D tiles, each
tile corresponding to a block of threads. One can then iterate along
the third (and last) direction, for example, the Z direction, shifting
the halo points for this last direction in registers organized in a
pipeline fashion, taking advantage of the fact that access to these
registers is extremely fast. The data of the 2-D mesh tile and its
halos (Fig. 3b) are loaded in shared memory from global memory.
To do this, each thread first loads the data corresponding to the
gridpoint it handles into shared memory, and then the halos are
loaded in a second step. We use four registers per thread to store the
data values corresponding to points located in k + 1, k + 2, k −
1 and k − 2. We then iterate on k and use these four registers as a
shifting register (or equivalently a 1-d sliding window or pipeline),
loading the new value in k + 2 and discarding the old value in k −
2 at each iteration. It turns out that this approach is more efficient
than the intuitive 3-D approach. As we have seen, without any
optimization 13 memory accesses are needed per gridpoint for each
array that needs to be read in our FD scheme. With the intuitive
3-D approach and for a spatial FD operator of order k and with

cubic 3-D threads blocks of size n × n × n in Fig. 3(a), (n3+3kn2)
n3

memory accesses per gridpoint and per array read are needed. If we
compare the number of accesses needed per gridpoint and per array
read between the 3-D approach with cubic blocks of 125 threads,
that is, n = 5, and the 2-D approach with blocks of 16 × 8 = 128
threads, for our fourth-order operator (k = 4) and for n = 5 we get
3.4 memory accesses per gridpoint, and for our implementation of
the 2-D approach we need only ((8 × 16) + k × 8 + k × 16)/(8 ×
16) = 1.75 memory accesses per gridpoint, that is, approximately
twice fewer. In spite of this drastic reduction, a value of 1.75 still
implies that the code will be bandwidth bound because the number
of (slow) memory accesses per gridpoint will not be very small
compared to the number of (very fast) calculations performed at
that point, that is, comparatively slow memory accesses will be
the main limiting factor. This is intrinsically related to the finite-
difference method and nothing more can be done to avoid it. Let us
note that NVIDIA has announced their new ‘FERMI’ architecture
(NVIDIA Corporation 2009b), which will have a cache system for
access to global memory and which should therefore make this issue
less critical.

The optimal size to use for the 2-D blocks of threads depends
strongly on the resources available on the GPU, in particular the
amount of shared memory and the number of registers available.
As we have seen above, using more registers and/or more shared
memory per thread reduces the occupancy of the code on the GPU
and may thus have a significant negative impact on performance.
In our case, for a NVIDIA GeForce 8800 GTX video card, using
the “CUDA GPU occupancy calculator” provided by NVIDIA in
the CUDA software distribution we have been able to determine
that blocks of 8 × 16 = 128 threads give the best result and an
occupancy of 1/6 � 0.167, which is not too problematic, as seen
above, because the code is bandwidth-bound.

Even if the above approach enables us to reduce the number of ac-
cesses to global memory, there are constraints imposed by the GPU
hardware to get a good level of parallelism, in particular regard-
ing the coalescence of accesses to global memory. On the NVIDIA
8800 GTX video card that we use, to get perfectly coalesced reads
when accessing single-precision floats, first the 16 threads of a half-
warp must access 32-b data (one float), resulting in a 64-B memory
transaction (16 floats). Second, these 16 floats must reside in the
same memory segment of 64 B, which implies that the address of
the first float must be a multiple of 64 B, that is, this is a memory

alignment constraint. And third, the threads must access the floats
in an ordered sequence: the kth thread of the half-warp must ac-
cess the kth float. To honour these three constraints in the code,
we align the first point of the mesh on a multiple of 64 B, using
zero padding in memory if needed. This way, each thread automat-
ically uses perfectly coalesced reads from and writes to the (i , j ,
k) gridpoint that it handles. This is true for all the points handled
by the thread block but not for the points that belong to the halo
(Fig. 3b) because the reads for these halo points cannot honour the
three above constraints.

To efficiently access the 1-D damping profile parameters in the
CPML absorbing layers, which are read-only values that can be
stored in 1-D arrays whose size is the thickness (in gridpoints) of
each CPML layer, we use a so-called ‘texture fetching’ mechanism
of CUDA, also called a 1-D texture, because it possesses a cache
and therefore allows faster access to these arrays.

The code is implemented in single precision, which is sufficient
in the vast majority of seismic modelling applications in the time
domain based on an explicit time scheme (see e.g. Komatitsch &
Tromp 1999; Komatitsch et al. 2009, and benchmarks therein). The
first advantage is reduced memory storage, by a factor of exactly
two. Another advantage is faster calculations on the GPU, because
according to the specifications given by the vendors, theoretical peak
performance is between eight (on NVIDIA cards equipped with a
GT200 chip, such as our 8800 GTX), five (AMD RV870 chip) and
two (NVIDIA GT300 chip) times slower in double precision than in
single precision. However, it is worth mentioning that in algorithms
such as finite differences that are intrinsically memory bound this
issue is less critical than it may sound because the main limitation is
slow memory accesses, not the speed of calculations, as seen above.

Host to device (i.e. CPU to GPU) or device to host (i.e. GPU
to CPU) data transfers often have a severe impact on performance
in codes ported to a GPU because these transfers go through a
PCI-Express bus on the motherboard, whose bandwidth is limited
compared to the speed of execution of the code on the GPU. For-
tunately, this is not a problem in our FD code when a single GPU
is used because the two main calculations in the algorithm, namely
the calculation of the stress tensor and then the calculation of the
velocity vector, which require more than 95 per cent of the total
number of operations, are performed entirely on the GPU without
any transfer to/from the host. At each time step of the time loop,
only one small transfer is required at the end in order to store that
time step of the seismogram (i.e. the final result we are interested
in) on the CPU, for instance to save it on the hard drive at the end
of the simulation. Tests not shown here have demonstrated that this
represents at most a few percent of the total execution time of the
code and is therefore not a problem in practice.

3.3 Using several GPUs in parallel based on message
passing (MPI)

Let us now explain how several GPUs can be used in parallel to
perform the calculations. Micikevicius (2009) already presented a
methodology to use up to 4 GPUs on a single node in the acous-
tic case with constant density, achieving linear scaling by overlap-
ping inter-GPU communication with computation, and Abdelkhalek
et al. (2009) described a way of running on a GPU cluster us-
ing overlapped non-blocking message passing communications be-
tween GPU nodes based on the Message-Passing Interface (MPI,
see e.g. Gropp et al. 1994). Here we extend such a message-passing
approach to the heterogeneous elastic case with CPML absorbing

C© 2010 The Authors, GJI, 182, 389–402

Journal compilation C© 2010 RAS

Accelerating a wave propagation code using GPUs 395

layers that we have presented above for an implementation on a
single GPU.

To implement MPI communications in our GPU application, we
choose the simplest way: each GPU is managed by a separate CPU
core. We do not use a more complex implementation that could for
instance be based on threads, in which a CPU core could handle
more than one GPU. We use non-blocking MPI communications
between compute nodes and we implement a classical technique
(see e.g. Danielson & Namburu 1998) to overlap the communica-
tion time with computations performed on each GPU: we compute
values for points that need to be exchanged with other GPUs first,
that is, points that are located along cut planes between adjacent
mesh slices, and then we compute other (inner) points not shared
with any neighbour while the non-blocking messages are travelling
across the network. Achieving effective overlap requires that the
ratio of the number of inner to outer gridpoints be sufficiently large,
which is the case for large enough mesh slices. Under these con-
ditions, the non-blocking MPI data transfer will statistically likely
complete before the completion of the computation of the inner
elements, and thus have negligible cost.

This classical approach can be decomposed into the following
steps:

(1) first compute values for points that need to be exchanged (i.e.
the outer points of each MPI slice);

(2) extract MPI buffers from the main arrays;

(3) launch asynchronous MPI ‘send’ and ‘receive’ calls for these
buffers;

(4) compute values for the inner points inside each mesh slice
while the non-blocking messages are travelling across the network;

(5) wait for all the communications to arrive (if effective overlap
is achieved, this step has negligible cost);

(6) update the main arrays based on the content of the MPI
buffers received.

In our multi-GPU code, we implement this algorithm with two
more steps, as illustrated in Fig. 4:

(i) (2bis) copy the MPI buffers created from a given GPU to the
CPU core that handles it,

(ii) (5bis) copy the MPI buffers received from a given CPU core
to the GPU it handles.

Because the arrays are stored on the GPU video card, steps (2) and
(6) are performed on the GPUs using dedicated CUDA kernels.

4 N U M E R I C A L VA L I DAT I O N
A N D P E R F O R M A N C E A NA LY S I S

GPU hardware is available in two different flavours: relatively cheap
video cards that can be installed on classical PCs that users already
possess, and higher-end and more expensive dedicated graphics
computing servers, for instance NVIDIA’s TESLA machines. Let

Figure 4. Implementation of asynchronous (i.e. non-blocking) message-passing MPI communications to allow for overlapping of communication time between
the compute nodes with calculations performed on the GPUs. The white boxes are executed on each CPU core, while the filled boxes are launched on each
GPU. In the velocity–stress finite-difference algorithm there are two main computation kernels: a first to compute the stress tensor based on the components of
the velocity vector, and a second to compute the velocity vector based on the components of the stress tensor. We thus use this communication pattern twice at
each iteration of the time loop, once to handle stress buffers and once to handle velocity buffers.

C© 2010 The Authors, GJI, 182, 389–402

Journal compilation C© 2010 RAS

396 D. Michéa and D. Komatitsch

us study both categories for our finite-difference application, the
first category targeting low cost and the second targeting more
demanding applications, for instance calculations that require more
memory. Our first experimental setup is therefore a cheap (its typical
cost currently being around US$250) NVIDIA GeForce 8800 GTX
video card installed in the PCI Express 1 bus of a quad-processor
dual-core 64-b AMD Opteron 2.8 GHz PC with 8 GB of RAM
memory and running Linux kernel 2.6.9. The 8800 GTX card has
16 multiprocessors, that is, 128 cores, and 768 MB of memory. The
bandwidth for the memory transfers is 86.4 GB per second, with
a memory bus width of 384 b. Our second experimental setup is a
cluster of 48 Teslas S1070 at CCRT/CEA/GENCI in Bruyères-le-
Châtel, France; each Tesla S1070 has four GT200 GPUs and two
PCI Express-2 buses (i.e. two GPUs share a PCI Express-2 bus). The
GT200 cards have 4 GB of memory, and the memory bandwidth
is 102 GB per second with a memory bus width of 512 b. The
Teslas are connected to BULL Novascale R422 E1 nodes with two
quad-core Intel Xeon Nehalem processors operating at 2.93 GHz.
Each node has 24 GB of RAM and runs Linux kernel 2.6.18. The
network is Infiniband.

First, on a single GT200 card, we determined experimentally (by
trying to allocate increasingly larger chunks of memory) that out of
the 4 GB of memory that are installed on that GPU, approximately
3.9 GB are available to the user (the rest is likely used by the
system to store the code itself, and also maybe for CUDA texture
binding). The largest 3-D model that we can thus use has a size
of 53.9 km × 48.3 km × 18.8 km discretized using a grid of 540
× 484 × 189 points, that is, with grid cells of size 100 m in the
three spatial directions. The model is heterogeneous and composed
of two horizontal elastic layers in contact. The lower layer has a
pressure wave velocity of 6000 m s−1, a shear wave velocity of
3460 m s−1, and a density of 2700 kg m−3. The upper layer has a
pressure wave velocity of 4200 m s−1, a shear wave velocity of
2422 m s−1, and a density of 2300 kg m−3. The interface between
the two layers is located at a depth of 1400 m. The values of the
pressure wave velocity, shear wave velocity and density are stored at
each gridpoint; thus, more complex heterogeneous models could be
handled in the context of real seismological applications. We take a
time step of 8 ms and we simulate a total of 1000 time steps, that is,
a total duration of 8 s. The source is a moment tensor of strike 0◦,
dip 90◦ and rake 0◦ and scalar moment M0 = 1018 N m located at
x = 2000 m, y = 4000 m and z = −2500 m. The moment rate time
function m(t) is a Gaussian with spread τ

m(t) = M0 H (t)√
2πτ

e− (t−4τ)2

2τ2 , (10)

where H(t) is the Heaviside distribution and where τ = 0.045 s.
A seismic recording station is located at x = 10 000 m and y =

10 000 m at the surface of the model (z = 0 m). It records the
three components of the velocity vector, with the X -axis of the grid
oriented towards the east, Y towards the North, and Z up. CPML
absorbing layers with a thickness of 10 gridpoints are implemented
on all the edges of the grid except the free surface. In some cases
below we will also run a simulation with a thickness of 16 gridpoints
for the CPML and show that on a GPU it is actually faster than when
using 10 gridpoints.

Let us first validate the GPU single-precision implementation of
our finite-difference code by comparing the results to an existing and
already validated (Aochi & Douglas 2006) serial single-precision
implementation in C for a classical processor core. In Fig. 5, we
compare the time evolution of the three components of the velocity
vector recorded at the seismic station. The two sets of seismograms

for each component are visually almost identical, and the absolute
difference amplified by a factor of 5000 is small, which validates the
implementation on the GPU. Very small differences are observed
owing to the fact that the GPU and CPU implementations perform
the operations in a different order, which results in a different round-
off. Also, single precision arithmetic on current GPU hardware is
not fully compliant with the IEEE-754 s23e8 standard because of
slightly higher errors [units in last place (ulp)], the lack of denor-
malization and rounding that always occurs to zero. This may result
in additional very small differences between operations performed
on a GPU and on a CPU. Let us note that it will not be the case any
more of the FERMI hardware of NVIDIA, which is fully IEEE-754
compliant (NVIDIA Corporation 2009b).

Let us now study the performance of the GPU code running on
a single GPU and compare it to the performance of the CPU code
running on a single CPU. Let us start with a 8800 GTX card. We
determined experimentally that out of the 768 MB of memory that
are installed on that GPU, approximately 708 MB are available to
the user. The largest grid that we can thus use has a size of 384 ×
328 × 52 points because when run with CPMLs with a thickness
of 16 points it requires 700 MB of memory on the GPU to store
the model and all the finite-difference arrays; with CPMLs with a
thickness of 10 points this reduces to 655 MB.

We compile the reference serial C code with the GNU gcc com-
piler version 3.4.6 with option -O3, and the code for the GPU with
the standard NVIDIA nvcc compiler of CUDA version 2.2. We also
compiled the code with the Portland pgcc compiler, but in the case
of our single-precision application GNU gcc resulted in faster code
and we thus selected it. The total elapsed time to perform the sim-
ulation (being the only user on the machine, to avoid interferences
with other jobs running and belonging to other users) is 6656 s for
the CPU code running on one CPU core and 177 s for the GPU code
running on one GPU.

It is uneasy to define the acceleration factor, also called ‘speedup’,
that one can get by resorting to using GPUs. There is currently a
debate in the computer science community about how this can or
should be done, and there is no unique definition. The easiest pos-
sibility is to define it as the ratio between the time spent running the
whole simulation on a single CPU core and the time spent running
the same simulation on a single GPU. However one can then argue
that modern compute nodes have several CPUs, and that each of
these CPUs contains several CPU cores, which are not used in that
definition. Therefore, another possible definition of the speedup is
the ratio between the time spent running the whole simulation on
all the CPU cores of a compute node and the time spent running
the same simulation on all the GPUs installed on that compute
node; this requires having two parallel codes, one that can run on
multiple CPUs and another one that can run on multiple GPUs. A
third definition uses a mixed (often called ‘hybrid’) model by tak-
ing the ratio between the time spent running the whole simulation
on all the CPU cores of a compute node and the time spent run-
ning the same simulation on all the GPUs plus all the CPU cores
(simultaneously) installed on that compute node; that is, using all
the resources available on a compute node in both cases, with or
without the GPUs. However that requires designing a parallel GPU
code that can use multiple GPUs but also do part of the calcula-
tions on the multiple CPUs and CPU cores on which these GPUs
are installed (hence the name ‘hybrid calculation’). Designing such
a hybrid code is complex. Each of these possible definitions has
advantages and drawbacks; some are more favourable to the GPU
technology while others are more favourable to the CPU technol-
ogy. Here for simplicity we use the first definition: the ratio between

C© 2010 The Authors, GJI, 182, 389–402

Journal compilation C© 2010 RAS

Accelerating a wave propagation code using GPUs 397

Figure 5. Time evolution of the X (top left-hand panel), Y (top right-hand panel) and Z (bottom panel) components of the velocity vector recorded at the
seismic receiver with our GPU / CUDA implementation on one GPU (solid lines) and with the reference CPU/C language implementation of Aochi & Douglas
(2006) on one CPU (dotted lines). The two sets of seismograms for each component are visually almost identical, which validates the implementation on the
GPU. Tiny differences appear owing to the fact that the GPU and CPU implementations perform the operations in a different order, which results in a different
roundoff. However, the third set of curves (dashed lines) shows that the absolute difference, that is, the so-called residual, amplified by a factor of 5000 is small.

the time spent on a single CPU core and the time spent on a sin-
gle GPU. The difficulty to define the acceleration factor comes from
the fact that one compares two very different hardware technologies
(CPU and GPU) and programming philosophies, which in addition
can be mixed in hybrid models. Furthermore, compilers for CPUs
and for GPUs are also very different. Moreover, for a given CPU
different compilers can lead to significantly different reference ex-
ecution times. In addition, giving speedup values alone is probably
not sufficient because, when comparing two different technologies,
one should also compare the manpower involved in code devel-
opment (which is currently generally higher for GPUs) as well as
electrical energy consumption (which is also currently higher for
PCs equipped with graphics accelerators). As a result, in general
speedup values should be considered with caution.

With the first definition above, the speedup obtained for our ap-
plication is 6656/177 = 38×. In Table 2, we also show performance
results for thicker, that is, more accurate CPML layers having a
thickness of 16 gridpoints because multiples of 16 give signifi-
cantly more efficient memory accesses on the GPU as seen above.
Indeed we observe that the GPU code with thicker CPMLs is faster
and has a higher speedup (51×) than when 10 gridpoints are used.
For comparison we also show the case with no CPML absorbing

layers, for which we get a speedup of 38×. The speedup is very
high in the three cases, but it depends on the thickness of the CPML
and on the size of the grid. Because we decompose the domain into
slices of size 16 × 8 in the two horizontal directions, each block
of threads is in charge of computing one of these slices. Thus, if
the thickness of the CPMLs is exactly 16, all the half-warps of the
thread blocks that are in charge of computing the CPMLs are non-
divergent, that is, all the threads of that half-warp perform the same
number of calculations. We therefore get maximum performance
when the thickness of the CPMLs is a multiple of 16 and when the
number of points of the grid is a multiple of 16 along X and of 8
along Y .

Let us now analyse the so-called ‘strong scaling’ of the GPU
code, defined as the variation of the total time needed to run the
application on the GPU when the number of gridpoints, that is, the
amount of work to perform, is increased linearly. Ideally the strong
scaling curve should thus be linear. In order to avoid measuring the
influence of divergent warps, that is, in order to measure scaling
only, we perform all the measurements with CPML layers having a
thickness of 16 gridpoints, that is, the best case of Table 2. In Fig. 6,
we plot the execution time of the code on the GPU as a function of
the number of points along Z. We observe that when the number of

C© 2010 The Authors, GJI, 182, 389–402

Journal compilation C© 2010 RAS

398 D. Michéa and D. Komatitsch

Table 2. Speedup with respect to a serial imple-
mentation obtained when running the 3-D finite-
difference code on one GPU instead of one CPU core,
that is, ratio between the total time spent running the
code on a CPU core and the total time spent running
the code on a GPU. The grid is composed of 384 ×
328 × 52 gridpoints.

CPML thickness 0 10 16
CPU time (s) 3840 6656 8320
GPU time (s) 100 177 162
Speedup 38 38 51

Notes: We perform the measurement for a grid with
CPML absorbing layers that have a thickness of 10
gridpoints, which is a classical value used on CPUs.
We also perform the measurement with thicker, that
is, more accurate CPML layers having a thickness of
16 gridpoints because multiples of 16 give
significantly more efficient memory accesses on the
GPU. Indeed we observe that the GPU code with
thicker CPMLs is faster than when 10 gridpoints are
used, which means that on a GPU it is better to use
thicker absorbing layers. For comparison we also
show the case with no CPML absorbing layers.

Figure 6. Strong scaling of the GPU 3-D finite-difference code running on
a single GPU as a function of the number of points along Z, that is, variation
of the total time spent running the code on the GPU when the number of
gridpoints along the Z-axis of the grid increases. Scaling is almost linear,
that is, almost perfect.

gridpoints along the Z-axis of the grid increases the execution time
varies almost linearly, that is, scaling is almost perfect.

In Fig. 7, we represent the variation of the time spent by each
block of threads to compute its share of the calculations on the GPU
when the number of thread blocks varies along the X - and Y -axes
of the grid. To do so, we make the total size of the model vary
along the X - and Y -axes but keep a constant size for each block
of threads, and we also use only model sizes that are multiples
of the size of the basic thread blocks in order to keep all threads
active. In Fig. 7, we therefore express the total size of each grid axis
equivalently as a number of thread blocks. Since the size of each
thread block and thus the number of calculations that it performs
does not vary, in an ideal case we should get a flat surface. However
in practice performance per block is higher when we use more
blocks, that is, a larger finite-difference grid, because the scheduler
of the GPU graphics card then has more opportunities to overlap
the latency of accesses of blocks to global memory by calculations

Figure 7. Scaling of the GPU 3-D finite-difference code running on a single
GPU as a function of the number of thread blocks along the X - and Y -axes
of the grid, that is, variation of the time spent by each block of threads
to compute its share of the calculations on the GPU when the number of
thread blocks varies. The size of each thread block and thus the number of
calculations that it performs does not vary, therefore in an ideal case we
should get a flat surface. Here, despite the coalesced memory accesses that
we implemented, scaling along X is not regular and suffers from moderate
variations that are likely due to undocumented hardware requirements. The
blue and cyan horizontal planes indicate reference levels for comparison.

performed by other blocks that are ready to start computing (i.e.
that are already done accessing global memory). However, despite
the coalesced memory accesses that we implemented, scaling along
X is not regular and suffers from moderate variations that are likely
due to undocumented hardware requirements.

To show that speedup values can greatly vary and are sensitive
to many factors, let us perform a few similar measurements on
a GT200 card. We use the grid composed of 540 × 484 × 189
points that requires 3.9 GB of GPU memory. We run two sets of
simulations: a first set with CPML layers that have a thickness of
10 gridpoints (thus 12.57 per cent of the gridpoints are located
in CPML layers) and a second set with no CPMLs. To study the
sensitivity of speedup measurements to the compilers used, we run
the CPU code twice: first compiled with the GNU gcc compiler (with
options -O3 -fno-trapping-math) and second compiled with the Intel
icc compiler (with options -O3 -ftz). For the GT200 GPU we use
the NVIDIA nvcc compiler (with no particular option, because
optimal options are selected automatically). As above, we make
measurements over a total of 1000 time steps. In the case of CPML
layers with a thickness of 10 points, the total duration of the run is
42 023 s on a CPU core with the GNU gcc compiler, 13 326 s on
a CPU core with the Intel icc compiler and 770 s on a GPU. Thus,
with the first definition above, the speedup is 42 023/770 = 54.6×
and 13 326/770 = 17.3×, respectively. When we do not implement
CPML layers, the total duration of the run is 20 941 seconds on a
CPU core with the GNU gcc compiler, 10 475 seconds on a CPU
core with the Intel icc compiler, and 360 seconds on a GPU. The
speedup is then 20 941/360 = 58.2× and 10 475/360 = 29.1×,
respectively.

Let us now analyse the behaviour of the code when several GPUs
are used simultaneously. We use 4, 6, 8, 9, 12, 16, 20 or 25 GT200
GPUs, each managed by a different CPU processor core, that is,
we also use 4, 6, 8, 9, 12, 16, 20 or 25 CPU cores. Communica-
tions between the different CPU cores are handled based upon MPI
message passing, as explained in Section 3.3.

In Fig. 8, we first perform a so-called ‘weak scaling’ test, that is,
a performance scaling test in which the amount of work to perform
per GPU is kept approximately constant. Each CPU core + GPU

C© 2010 The Authors, GJI, 182, 389–402

Journal compilation C© 2010 RAS

Accelerating a wave propagation code using GPUs 399

Figure 8. Weak scaling test, i.e. performance scaling test in which the
amount of work to perform per GPU is kept approximately constant. Each
CPU core + GPU handles a 4 GB mesh and we increase the number of GPUs
that participate in the calculation. Ideally the weak scaling curve should be
flat; here the measured weak scaling is very good.

thus handles a 4 GB mesh slice and we increase the number of GPUs
that participate in the calculation, which implies that we increase
the total size of the mesh. Such a weak scaling test allows one to
see if communications between nodes are effectively overlapped
with calculations on the GPUs, in which case ideally the weak
scaling curve should be flat (i.e. the performance level should remain
constant when more nodes participate in the calculation because the
amount of work to perform on each node remains approximately
constant). In Fig. 9, we then perform a so-called ‘strong scaling’
test, that is, the total size of the mesh is now kept constant when
more nodes participate in the calculation, which implies that the
size of the mesh handled by each GPU decreases. Let us mention
that in these scaling tests we do not include CPML absorbing layers
because in these layers a significantly different (higher) number of
operations is performed (to solve more equations), which would

Figure 9. Strong scaling test, that is, the total size of the mesh is kept
constant when more nodes participate in the calculation. Therefore the size of
the mesh slice handled by each GPU decreases. Ideally strong scaling should
be linear (solid straight line), but in practice the amount of calculations
performed per GPU becomes too small when a large number of GPUs is
used, thus reducing measured performance (line with symbols).

result in an imbalance between nodes and thus measurements that
would be very difficult to interpret.

We observe that the weak scaling is very good, whereas the strong
scaling is not as good because when we use 25 GPUs for instance
instead of four for a model size of 4 GB, each node computes a
model of size 160 MB only, which is far too small for the GPU
to use all its resources efficiently enough; and let us recall that in
Fig. 7 we have also shown that performance is sensitive to the size
of the model along X and Y . In these tests, we measured a maximum
of 1.5 per cent of elapsed time spent waiting for communications,
that is, wasted in the MPI_Wait() function of Fig. 4. This time
fluctuates between 0 per cent and 1.5 per cent, even for the small
160 MB case, which leads us to say that communications seem to
be efficiently overlapped, and almost negligible in practice. All the
operations that have been added in Fig. 4 to manage the creation,
transfer and update of the MPI communication buffers take a total
of about 0.5 per cent of elapsed time, which is also negligible in
practice.

5 C O N C LU S I O N S A N D F U T U R E W O R K

We have accelerated a 3-D finite-difference wave propagation code
by a factor between about 20 and 60 compared to a serial im-
plementation using either one or several NVIDIA GPU graphics
cards and the CUDA programming language. We have simulated
seismic wave propagation in the heterogeneous elastic case, using
CPML absorbing layers on the fictitious edges of the grid and imple-
menting the finite-difference parallelization technique for GPUs of
Micikevicius (2009), with the additional use of texture fetching in
CUDA to compensate for the lack of shared memory on the graph-
ics card, and with the use of message passing (MPI) when several
GPUs are used in parallel.

We have shown that the GPU code is accurate by comparing our
results to results obtained by running the same simulation on a CPU
core.

Let us mention that due to the fact that the seismic wave equa-
tion written in velocity vector and stress tensor has the same second-
order linear hyperbolic form as Maxwell’s equations written in
E and B (or H) vectors, the GPU implementation presented can
be applied to Maxwell’s equations as well in a straightforward
fashion.

We have mentioned that more calculations are performed in the
CPML layers because more equations with more terms need to be
computed there, and therefore on a parallel machine with a multi-
GPU setup and MPI communications used between nodes of the
cluster significant load balancing issues may arise. They may slow
down the whole code, which synchronizes on the slowest computing
element. In future work a possible solution would be to resort to
domain decomposition with different weights assigned to CPML
gridpoints and to regular gridpoints.

In future work we would also like to use the OpenCL program-
ming language instead of CUDA to make the code portable to non-
NVIDIA hardware, including multicore systems. Other options to
investigate could be the use of compiler directives, somewhat sim-
ilar to the philosophy of OpenMP, or higher-lever programming
environments. Examples are the HMPP directives (Dolbeau et al.
2007), the StarSs project (Planas et al. 2009), StarPU (Augonnet
et al. 2009) and S_GPU (Genovese et al. 2009). Another interest-
ing issue to analyse would be how the new GPU architecture from
NVIDIA, which is called the ‘Fermi’ (NVIDIA Corporation 2009b),
may help to improve performance, in particular because this chip

C© 2010 The Authors, GJI, 182, 389–402

Journal compilation C© 2010 RAS

400 D. Michéa and D. Komatitsch

almost quadruples the amount of shared memory per multiprocessor
and has a coherent memory cache.

Regarding the seismic wave equation itself, attenuation (vis-
coelasticity) should be added, which is easy to do in finite-difference
codes in the time domain based upon so-called memory variables
(see e.g. Kristek & Moczo 2003; Moczo & Kristek 2005; Martin &
Komatitsch 2009).

A C K N OW L E D G M E N T S

The authors thank Dominik Göddeke, Gordon Erlebacher, Rached
Abdelkhalek, Henri Calandra, Jean Roman, Jean-François Méhaut,
Christophe Merlet, Philippe Thierry and Roland Martin for fruitful
discussions about GPU computing. They acknowledge the main
developers of the ONDES3D software package, Hideo Aochi,
Ariane Ducellier and Yohan Lee-Tin-Yien from BRGM (France),
for their support. They also thank Peter Moczo, an anonymous
reviewer and editor Jeannot Trampert for fruitful comments that
improved the manuscript. Half of the calculations were performed
on a 8800 GTX system at BRGM and half on the ‘Titane’ BULL
Novascale R422 GPU cluster at CCRT/CEA/GENCI in Bruyères-
le-Châtel, France, with support from Stéphane Requena, Christine
Ménaché, Édouard Audit, Jean-Noël Richet, Gilles Wiber, Julien
Derouillat, Laurent Nguyen and Pierre Bonneau.

R E F E R E N C E S

Abdelkhalek, R., 2007. Évaluation des accélérateurs de calcul GPGPU pour
la modélisation sismique, Master’s thesis, ENSEIRB, Bordeaux, France.

Abdelkhalek, R., Calandra, H., Coulaud, O., Roman, J. & Latu, G., 2009.
Fast seismic modeling and reverse time migration on a GPU cluster, in
High Performance Computing & Simulation 2009, pp. 36–44, Leipzig,
Germany, http://hal.inria.fr/docs/00/40/39/33/PDF/hpcs.pdf.

Adams, S., Payne, J. & Boppana, R., 2007. Finite difference time domain
(FDTD) simulations using graphics processors, in Proceedings of the De-
partment of Defense High Performance Computing Modernization Pro-
gram Users Group Conference, pp. 334–338, IEEE Computer Society,
Washington, DC, USA.

Alterman, Z. & Karal, F.C., 1968. Propagation of elastic waves in layered
media by finite difference methods, Bull. seism. Soc. Am., 58, 367–398.

Anderson, J.A., Lorenz, C.D. & Travesset, A., 2008. General purpose molec-
ular dynamics simulations fully implemented on graphics processing
units, J. Comput. Phys., 227(10), 5342–5359.

Aochi, H. & Douglas, J., 2006. Testing the validity of simulated strong
ground motion from the dynamic rupture of a finite fault by using empir-
ical equations, Bull. Earthq. Eng., 4(3), 211–229.

Augonnet, C., Thibault, S., Namyst, R. & Wacrenier, P.-A., 2009. StarPU:
a unified platform for task scheduling on heterogeneous multicore archi-
tectures, in Proceedings of the 15th EuroPar Conference, Vol. 5704 of
Lecture Notes in Computer Science, pp. 863–874, Springer, Delft, The
Netherlands.

Balevic, A., Rockstroh, L., Li, W., Hillebrand, J., Simon, S., Tausendfre-
und, A., Patzelt, S. & Goch, G., 2008a. Acceleration of a finite-difference
method with general purpose GPUs: lesson learned, in Proceedings of the
8th IEEE International Conference on Computer and Information Tech-
nology, pp. 291–294, IEEE Computer Society, Washington, DC, USA.

Balevic, A., Rockstroh, L., Tausendfreund, A., Patzelt, S., Goch, G. & Si-
mon, S., 2008b. Accelerating simulations of light scattering based on
a finite-difference time-domain method with general purpose GPUs, in
Proceedings of the 11th IEEE International Conference on Computa-
tional Science and Engineering, pp. 327–334, IEEE Computer Society,
Washington, DC, USA.

Baron, G.S., Sarris, C.D., Fiume, E. & Rogers Sr., E.S., 2005. Fast and
accurate time-domain simulations with commodity graphics hardware,

in Proceedings of the 2005 IEEE Antennas and Propagation Society
International Symposium, 4A, pp. 193–196, IEEE Computer Society,
Washington, DC, USA.

Bell, N. & Garland, M., 2009. Implementing sparse matrix-vector multipli-
cation on throughput-oriented processors, in SC’09: Proceedings of the
2009 ACM/IEEE conference on Supercomputing, pp. 1–11, ACM, New
York, USA.

Bérenger, J.P., 1994. A Perfectly Matched Layer for the absorption of elec-
tromagnetic waves, J. Comput. Phys., 114, 185–200.

Bernacki, M., Lanteri, S. & Piperno, S., 2006. Time-domain parallel simu-
lation of heterogeneous wave propagation on unstructured grids using ex-
plicit, nondiffusive, discontinuous Galerkin methods, J. Comput. Acoust.,
14(1), 57–81.

Brandvik, T. & Pullan, G., 2007. Acceleration of a two-dimensional Euler
flow solver using commodity graphics hardware, in Proceedings of the
Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 221(12),
1745–1748.

Carcione, J.M. & Wang, P.J., 1993. A Chebyshev collocation method for
the wave equation in generalized coordinates, Comp. Fluid Dyn. J., 2,
269–290.

Chaljub, E., Komatitsch, D., Vilotte, J.P., Capdeville, Y., Valette, B. & Festa,
G., 2007. Spectral element analysis in seismology, in Advances in Wave
Propagation in Heterogeneous Media, Vol. 48 of Advances in Geophysics,
pp. 365–419, eds Wu, R.-S. & Maupin, V., Elsevier/Academic Press,
London, UK.

Chew, W.C. & Liu, Q., 1996. Perfectly Matched Layers for elastodynamics:
a new absorbing boundary condition, J. Comput. Acoust., 4(4), 341–
359.

Chorin, A.J., 1968. Numerical solution of the Navier-Stokes equations,
Math. Comput., 22, 745–762.

Cockburn, B., Karniadakis, G.E. & Shu, C.-W., 2000. Discontinuous
Galerkin Methods: Theory, Computation and Applications, Springer,
Heidelberg, Germany.

Collino, F. & Tsogka, C., 2001. Application of the PML absorbing layer
model to the linear elastodynamic problem in anisotropic heterogeneous
media, Geophysics, 66(1), 294–307.

Danielson, K.T. & Namburu, R.R., 1998. Nonlinear dynamic finite element
analysis on parallel computers using Fortran90 and MPI, Adv. Eng. Soft-
ware, 29(3-6), 179–186.

Dolbeau, R., Bihan, S. & Bodin, F., 2007. HMPP: a hybrid multi-core par-
allel programming environment, in Proceedings of the Workshop on Gen-
eral Purpose Processing on Graphics Processing Units (GPGPU’2007),
pp. 1–5, Boston, Massachusetts, USA.

Drossaert, F.H. & Giannopoulos, A., 2007. A nonsplit complex frequency-
shifted PML based on recursive integration for FDTD modeling of elastic
waves, Geophysics, 72(2), T9–T17.

Dumbser, M. & Käser, M., 2006. An arbitrary high-order discontinuous
Galerkin method for elastic waves on unstructured meshes-II. The three-
dimensional isotropic case, Geophys. J. Int., 167(1), 319–336.

Elsen, E., LeGresley, P. & Darve, E., 2008. Large calculation of the flow
over a hypersonic vehicle using a GPU, J. Comput. Phys., 227(24),
10 148–10 161.

Falk, R.S. & Richter, G.R., 1999. Explicit finite element methods for sym-
metric hyperbolic equations, SIAM J. Numer. Anal., 36(3), 935–952.

Festa, G. & Vilotte, J.P., 2005. The Newmark scheme as velocity-stress
time-staggering: an efficient PML implementation for spectral-element
simulations of elastodynamics, Geophys. J. Int., 161, 789–812.

Festa, G., Delavaud, E. & Vilotte, J.P., 2005. Interaction between surface
waves and absorbing boundaries for wave propagation in geological
basins: 2D numerical simulations, Geophys. Res. Lett., 32(20), L20306,
doi:10.1029/2005GL024091.

Gedney, S.D. & Zhao, B., 2010. An auxiliary differential equation for-
mulation for the complex-frequency shifted PML, IEEE Trans. Antenn.
Propagat., 58(3), 838–847.

Genovese, L., Ospici, M., Deutsch, T., Méhaut, J.-F., Neelov, A. &
Goedecker, S., 2009. Density functional theory calculation on many-
cores hybrid central processing unit-graphic processing unit architectures,
J. Chem. Phys., 131(3), 034103, doi:10.1063/1.3166140.

C© 2010 The Authors, GJI, 182, 389–402

Journal compilation C© 2010 RAS

Accelerating a wave propagation code using GPUs 401

Giraldo, F.X., Hesthaven, J.S. & Warburton, T., 2002. Nodal high-order
discontinuous Galerkin methods for the spherical shallow water equations,
J. Comput. Phys., 181(2), 499–525.

Graves, R.W., 1996. Simulating seismic wave propagation in 3D elastic
media using staggered-grid finite differences, Bull. seism. Soc. Am., 86(4),
1091–1106.

Gropp, W., Lusk, E. & Skjellum, A., 1994. Using MPI, Portable Parallel Pro-
gramming with the Message-Passing Interface, MIT Press, Cambridge,
USA.

Grote, M.J., Schneebeli, A. & Schötzau, D., 2006. Discontinuous Galerkin
finite element method for the wave equation, SIAM J. Numer. Anal., 44(6),
2408–2431.

Hastings, F.D., Schneider, J.B. & Broschat, S.L., 1996. Application of the
Perfectly Matched Layer (PML) absorbing boundary condition to elastic
wave propagation, J. acoust. Soc. Am., 100(5), 3061–3069.

Holberg, O., 1987. Computational aspects of the choice of operator and
sampling interval for numerical differentiation in large-scale simulation
of wave phenomena, Geophys. Prospect., 35, 629–655.

Humphrey, J.R., Price, D.K., Durbano, J.P., Kelmelis, E.J. & Martin, R.D.,
2006. High performance 2D and 3D FDTD solvers on GPUs, in Proceed-
ings of the 10th WSEAS International Conference on Applied Mathemat-
ics, pp. 547–550, World Scientific and Engineering Academy and Society
(WSEAS), Dallas, TX, USA.

Inman, M.J. & Elsherbeni, A.Z., 2008. Optimization and parameter ex-
ploration using GPU based FDTD solvers, in Proceedings of the 2008
IEEE MTT-S International Microwave Symposium, pp. 149–152, Atlanta,
Georgia, USA.

Inman, M.J., Elsherbeni, A.Z., Maloney, J.G. & Baker, B.N., 2007. GPU
based FDTD solver with CPML boundaries, in Proceedings of the
2007 IEEE Antennas and Propagation Society International Symposium,
pp. 5255–5258, Honolulu, Hawaii, USA.

Kawase, H., 1988. Time-domain response of a semi-circular canyon for
incident SV , P and Rayleigh waves calculated by the discrete wavenumber
boundary element method, Bull. seism. Soc. Am., 78, 1415–1437.

Klöckner, A., Warburton, T., Bridge, J. & Hesthaven, J.S., 2009. Nodal
discontinuous Galerkin methods on graphics processors, J. Comput. Phys.,
228, 7863–7882.

Komatitsch, D. & Martin, R., 2007. An unsplit convolutional Perfectly
Matched Layer improved at grazing incidence for the seismic wave equa-
tion, Geophysics, 72(5), SM155–SM167.

Komatitsch, D. & Tromp, J., 1999. Introduction to the spectral-element
method for 3-D seismic wave propagation, Geophys. J. Int., 139(3),
806–822.

Komatitsch, D., Coutel, F. & Mora, P., 1996. Tensorial formulation of the
wave equation for modelling curved interfaces, Geophys. J. Int., 127(1),
156–168.

Komatitsch, D., Michéa, D. & Erlebacher, G., 2009. Porting a high-order
finite-element earthquake modeling application to NVIDIA graphics
cards using CUDA, J. Parallel Distrib. Comput., 69(5), 451–460.

Komatitsch, D., Erlebacher, G., Göddeke, D. & Michéa, D., 2010a. High-
order finite-element seismic wave propagation modeling with MPI on a
large-scale GPU cluster, J. Comput. Phys., in press.

Komatitsch, D., Göddeke, D., Erlebacher, G. & Michéa, D., 2010b. Modeling
the propagation of elastic waves using spectral elements on a cluster of
192 GPUs, Comput. Sci. Res. Develop., in press, doi:10.1007/s00450-
010-0109-1.

Krakiwsky, S.E., Turner, L.E. & Okoniewski, M.M., 2004a. Graphics pro-
cessor unit (GPU) acceleration of a finite-difference time-domain (FDTD)
algorithm, Proceedings of the 2004 IEEE International Symposium on
Circuits and Systems, pp. 265–268.

Krakiwsky, S.E., Turner, L.E. & Okoniewski, M.M., 2004b. Acceleration
of finite-difference time-domain (FDTD) using graphics processor units
(GPU), IEEE 2004 MTT-S International Microwave Symposium Digest,
2, 1033–1036.

Kristek, J. & Moczo, P., 2003. Seismic-wave propagation in viscoelas-
tic media with material discontinuities: A 3D fourth-order staggered-
grid finite-difference modeling, Bull. seism. Soc. Am., 93(5), 2273–
2280.

Kristek, J., Moczo, P. & Galis, M., 2009. A brief summary of some PML
formulations and discretizations for the velocity-stress equation of seismic
motion, Stud. Geophys. Geod., 53(4), 459–474.

Liu, Q., Polet, J., Komatitsch, D. & Tromp, J., 2004. Spectral-element mo-
ment tensor inversions for earthquakes in Southern California, Bull. seism.
Soc. Am., 94(5), 1748–1761.

Madariaga, R., 1976. Dynamics of an expanding circular fault, Bull. seism.
Soc. Am., 66(3), 639–666.

Martin, R. & Komatitsch, D., 2006. An optimized convolution-perfectly
matched layer (C-PML) absorbing technique for 3D seismic wave
simulation based on a finite-difference method, Geophys. Res. Abstr.,
8, 03988, Abstract EGU06-A-03988, www.cosis.net/abstracts/EGU06/
03988/EGU06-J-03988-1.pdf.

Martin, R. & Komatitsch, D., 2009. An unsplit convolutional perfectly
matched layer technique improved at grazing incidence for the viscoelas-
tic wave equation, Geophys. J. Int., 179(1), 333–344.

Martin, R., Komatitsch, D. & Barucq, H., 2005. An optimized convolution-
perfectly matched layer (C-PML) absorbing technique for 3D seis-
mic wave simulation based on a finite-difference method, EOS, Trans.
Am. geophys. Un., 86(52), Fall Meet. Suppl., Abstract NG43B–0574,
www.agu.org/meetings/fm05/waisfm05.html.

Martin, R., Komatitsch, D. & Ezziani, A., 2008a. An unsplit convolutional
perfectly matched layer improved at grazing incidence for seismic wave
equation in poroelastic media, Geophysics, 73(4), T51–T61.

Martin, R., Komatitsch, D. & Gedney, S.D., 2008b. A variational formula-
tion of a stabilized unsplit convolutional perfectly matched layer for the
isotropic or anisotropic seismic wave equation, Comput. Model. Eng. Sci.,
37(3), 274–304.

Martin, R., Komatitsch, D., Gedney, S.D. & Bruthiaux, E., 2010. A high-
order time and space formulation of the unsplit perfectly matched layer for
the seismic wave equation using Auxiliary Differential Equations (ADE-
PML), Comput. Model. Eng. Sci., 56(1), 17–42.

Meza-Fajardo, K.C. & Papageorgiou, A.S., 2008. A nonconvolutional, split-
field, perfectly matched layer for wave propagation in isotropic and
anisotropic elastic media: stability analysis, Bull. seism. Soc. Am., 98(4),
1811–1836.

Micikevicius, P., 2009. 3D finite-difference computation on GPUs using
CUDA, in GPGPU-2: Proceedings of the 2nd Workshop on General Pur-
pose Processing on Graphics Processing Units, pp. 79–84, Washington,
DC, USA.

Moczo, P. & Kristek, J., 2005. On the rheological models used for time-
domain methods of seismic wave propagation, Geophys. Res. Lett., 32,
L01306, doi:10.1029/2004GL021598.

Moczo, P., Robertsson, J. & Eisner, L., 2007. The finite-difference time-
domain method for modeling of seismic wave propagation, in Advances
in Wave Propagation in Heterogeneous Media, Vol. 48 of Advances
in Geophysics, Chapter 8, pp. 421–516, eds Wu, R.-S. & Maupin, V.,
Elsevier/Academic Press, London, UK.

Monk, P. & Richter, G.R., 2005. A discontinuous Galerkin method for
linear symmetric hyperbolic systems in inhomogeneous media, J. Scient.
Comput., 22-23(1-3), 443–477.

NVIDIA Corporation, 2009a. NVIDIA CUDA Programming Guide Version
2.3, Santa Clara, California, USA, 139 pp.

NVIDIA Corporation, 2009b. NVIDIA’s next generation CUDA compute
architecture: FERMI, Tech. rep., NVIDIA, Santa Clara, California, USA,
22 pp.

Nyland, L., Harris, M. & Prins, J., 2007. Fast N-body simulation with CUDA,
in GPU Gems 3, Chapter 31, pp. 677–695, Addison-Wesley Professional,
Boston, MA, USA.

Owens, J.D., Luebke, D.P., Govindaraju, N.K., Harris, M.J., Krüger, J.,
Lefohn, A.E. & Purcell, T.J., 2007. A survey of general-purpose com-
putation on graphics hardware, Comput. Graph. Forum, 26(1), 80–
113.

Planas, J., Badia, R.M., Ayguadé, E. & Labarta, J., 2009. Hierarchical task-
based programming with StarSs, Int. J. High Perform. Comput. Appl.,
23(3), 284–299.

Price, D.K., Humphrey, J.R. & Kelmelis, E.J., 2007. GPU-based acceler-
ated 2D and 3D FDTD solvers, in Proceedings of the SPIE Physics and

C© 2010 The Authors, GJI, 182, 389–402

Journal compilation C© 2010 RAS

402 D. Michéa and D. Komatitsch

Simulation of Optoelectronic Devices XV Conference, Vol. 6468, SPIE
and the International Society for Optical Engineering, San Jose,
California, USA.

Reed, W.H. & Hill, T.R., 1973. Triangular mesh methods for the neutron
transport equation, Tech. Rep. LA-UR-73-479, Los Alamos Scientific
Laboratory, Los Alamos, USA.

Roden, J.A. & Gedney, S.D., 2000. Convolution PML (CPML): an efficient
FDTD implementation of the CFS-PML for arbitrary media, Microwave
Opt. Technol. Lett., 27(5), 334–339.

Tromp, J., Komatitsch, D. & Liu, Q., 2008. Spectral-element and
adjoint methods in seismology, Commun. Comput. Phys., 3(1),
1–32.

Vai, R., Castillo-Covarrubias, J.M., Sánchez-Sesma, F.J., Komatitsch, D.,

& Vilotte, J.P., 1999. Elastic wave propagation in an irregularly layered
medium, Soil Dyn. Earthq. Eng., 18(1), 11–18.

Valcarce, A., De La Roche, G. & Zhang, J., 2008. A GPU approach to
FDTD for radio coverage prediction, in Proceedings of the 11th IEEE
International Conference on Communication Systems, pp. 1585–1590,
Guangzhou, China.

Virieux, J., 1986. P-SV wave propagation in heterogeneous media: velocity-
stress finite-difference method, Geophysics, 51, 889–901.

Yang, J., Wang, Y. & Chen, Y., 2007. GPU accelerated molecular dynamics
simulation of thermal conductivities, J. Comput. Phys., 221, 799–804.

Yee, K.S., 1966. Numerical solution of initial boundary value problems
involving Maxwell’s equations, IEEE Trans. Antenn. Propagat., 14,
302–307.

C© 2010 The Authors, GJI, 182, 389–402

Journal compilation C© 2010 RAS

