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S U M M A R Y
We simulate global seismic wave propagation based upon a spectral-element method. We
include the full complexity of 3-D Earth models, i.e. lateral variations in compressional-wave
velocity, shear-wave velocity and density, a 3-D crustal model, ellipticity, as well as topography
and bathymetry. We also include the effects of the oceans, rotation and self-gravitation in
the context of the Cowling approximation. For the oceans we introduce a formulation based
upon an equivalent load in which the oceans do not need to be meshed explicitly. Some of
these effects, which are often considered negligible in global seismology, can in fact play a
significant role for certain source–receiver configurations. Anisotropy and attenuation, which
were introduced and validated in a previous paper, are also incorporated in this study. The
complex phenomena that are taken into account are introduced in such a way that we preserve
the main advantages of the spectral-element method, which are an exactly diagonal mass
matrix and very high computational efficiency on parallel computers. For self-gravitation
and the oceans we benchmark spectral-element synthetic seismograms against normal-mode
synthetics for the spherically symmetric reference model PREM. The two methods are in
excellent agreement for all body- and surface-wave arrivals with periods greater than about 20 s
in the case of self-gravitation and 25 s in the case of the oceans. At long periods the effect of
gravity on multiorbit surface waves up to R4 is correctly reproduced. We subsequently present
results of simulations for two real earthquakes in fully 3-D Earth models for which the fit to the
data is significantly improved compared with classical normal-mode calculations based upon
PREM. For example, we show that for trans-Pacific paths the Rayleigh wave can arrive more
than a minute earlier than in PREM, and that the Love wave is much shorter in duration.

Key words: body waves, electrodynamics, global seismology, numerical techniques, seismic
wave propagation, surface waves, tomography.

1 I N T R O D U C T I O N

In a previous paper (Komatitsch & Tromp 2002, hereafter re-
ferred to as Paper I) we demonstrated that the spectral-element
method (SEM) can accurately simulate seismic wave propaga-
tion in spherically symmetric Earth models at periods greater than
about 20 s. In this paper we introduce the full complexity of
the 3-D Earth, i.e. lateral variations in compressional-wave veloc-
ity, shear-wave velocity and density in the mantle, a 3-D crustal
model, as well as ellipticity, surface topography and bathymetry.
We also introduce more complexity in the wave equation itself
by talking into account the effects of the oceans, rotation and
self-gravitation. The effects of the ocean are incorporated based
upon an equivalent surface load without having to actually mesh
the water layer. Self-gravitation, in the context of the Cowling
approximation, is introduced in the SEM in a fashion similar to
the innovative work of Chaljub (2000) and Chaljub et al. (2002).
We validate the implementation of self-gravitation and the oceans

by comparison with normal-mode synthetics for the Preliminary
Reference Earth Model (PREM) (Dziewonski & Anderson 1981).

In this paper we will be referring to equations and figures in
Paper I using the notation (I.x), as in Fig. I.1 for Fig. 1 of Paper I.

2 M E S H I N G T H E 3 - D E A R T H

We use the mesh for a spherically symmetric Earth model devel-
oped in Paper I (Fig. I.6) as a starting point for a mesh for the 3-D
Earth. Such a mesh is based on the concept of the ‘quasi-uniform
gnomonic projection’, also known as the ‘cubed sphere’ (Sadourny
1972; Ronchi et al. 1996; Taylor et al. 1997), i.e. an analytical map-
ping between the six sides of a cube and the surface of the sphere (see
Paper I for details, in particular Figs. I.1–6). The idea was introduced
for global wave propagation by Taylor et al. (1997) and Chaljub
(2000), and later used by Capdeville et al. (2002). Any reason-
ably smooth laterally heterogeneous shear-velocity, compressional-
velocity or density model may be used in the mantle. In this paper
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Figure 1. Mantle model S20RTS (Ritsema et al. 1999) is superimposed on
the mesh. A 3-D density model is obtained by scaling the shear-wave velocity
variations by a factor of 0.4, in accordance with mineral physics estimates.
The figure shows lateral variations in shear velocity projected on to the four
sides of the six chunks that constitute the cubed sphere mesh (see Figs I.1–6
for details). Blue colours denote faster than average shear-wave velocities
and red colours denote slower than average shear-wave velocities.

we will use model S20RTS of Ritsema et al. (1999) (Fig. 1). Lateral
variations determined by this model are superimposed on PREM
(Dziewonski & Anderson 1981). Variations in density are obtained
by scaling the shear-wave velocity variations by a factor of 0.4, in
accordance with mineral physics estimates.

Every phase observed in a seismogram is affected by the Earth’s
crust, so it is important to incorporate a detailed crustal model in the
mesh. We use Crust 2.0 (Bassin et al. 2000), which is a global 2◦ ×
2◦ crustal model (Fig. 2). This model is a significantly improved
version of the 5◦ × 5◦ model Crust 5.1 (Mooney et al. 1998). We do
not incorporate the ice layer that is present in some regions of Crust
2.0, but we do include the sedimentary layers. The Moho depth
in Crust 2.0 varies between 6.65 km (oceanic crust) and 75 km
(underneath the Himalaya). The compressional-wave velocity at the
surface of Crust 2.0, excluding the sedimentary layers, varies be-
tween 5.0 and 6.2 km s−1, the shear-wave velocity varies between 2.5
and 3.2 km s−1, and density varies between 2600 and 2800 kg m−3.
For comparison, PREM has an upper-crustal P velocity of
5.8 km s−1, an S velocity of 3.2 km s−1 and a density of 2600 kg m−3.
We do not honour the shape of the Moho in the mesh, since it is too
shallow in many locations (e.g. the oceanic crust) to squeeze spec-
tral elements between the Moho and the surface without creating
stability problems in the time-integration scheme. Instead, we as-
sign Crust 2.0 velocities and density to the pre-existing mesh. We
smooth Crust 2.0 to suppress its sharp transitions between 2◦ × 2◦

blocks. The grid spacing along the surface is roughly 10 km, as in
Paper I (4 × 240 spectral elements along a great circle, with five
grid points in each lateral direction of an element).

Once the mantle and crustal models have been added, we make
the Earth elliptical in shape (Fig. 3). The ellipticity as a function
of depth is determined by solving Clairaut’s equation (Dahlen &
Tromp 1998), and the mesh is stretched or squashed accordingly.

Figure 2. The 2◦ × 2◦ crustal model Crust 2.0 (Bassin et al. 2000) is super-
imposed on the mesh. Because the model consists of blocks with constant
properties (top), we smooth it by averaging over spherical caps with a 2◦
radius (bottom). The figure shows Moho depth (which varies between 6.65
and 75 km in the model). Red represents thicker than average crust and blue
thinner than average crust.

Free-surface topography and bathymetry are also incorporated in the
mesh (Fig. 4). We use the global 5 × 5 min2 ETOPO5 bathymetry
and topography model (NOAA 1988). The bathymetry map is also
used to define the thickness of the oceans at the surface of the mesh
in order to take into account the effects of the oceans on global wave
propagation. As will be explained in Sections 3 and 4, the oceans
are incorporated in the SEM by introducing an equivalent load at
the ocean floor, without having to explicitly mesh the water layer.
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Figure 3. The ellipticity of the Earth is incorporated in the mesh. As a
result of its rotation, the Earth is slightly flattened at the poles (blue colours)
and elongated at the equator (red colours). The ellipticity at the surface is
small (ε � 1/300).

At this stage we therefore simply store a map of the thickness of the
oceans (Fig. 5).

It is important to mention that, as in Paper I, the stability of the
time-integration scheme, i.e. the value of the time step �t , remains
controlled by the size of the mesh near the inner-core boundary. The
stability condition is therefore not affected by the introduction of
3-D heterogeneity.

Figure 4. Topography and bathymetry of the Earth, obtained from the ETOPO5 model (NOAA 1988), is added to the mesh. Left: surface elements of the
actual mesh used in this paper. The colour scale represents elevation with respect to the reference ellipsoid. One can see how accurately the mesh honours
topography. Right: close-up of Mexico and the Southern United States showing the spectral elements in the mesh at the surface (grey squares). In each spectral
element we use a polynomial degree N = 4 (see Paper I for details), therefore each surface mesh element contains (N + 1)2 = 25 grid points, which translates
into an average grid spacing of approximately 10 km at the surface.

Figure 5. Map of the thickness of the oceans and large lakes at the surface
of the mesh. In Section 3 we use this map to represent the effects of the
oceans on global wave propagation based upon an equivalent load, without
having to explicitly mesh the oceans. The oceans represent about 75 per cent
of the surface of the Earth (the colour scale indicates ocean depth) and the
continents (yellow) about 25 per cent. The bathymetry map is taken from
model ETOPO5 (NOAA 1988).

3 T H E S P E C T R A L - E L E M E N T M E T H O D

In this paper we incorporate the oceans, which are mostly relevant
for free-surface reflected phases, such as PP, SS and SP, and for
the dispersion of Rayleigh waves. We also include the effects of
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self-gravitation, based upon the Cowling approximation need, and
rotation, which are mostly relevant in the context of long-period
surface waves.

3.1 Hydrostatic equilibrium

Throughout this paper we assume that the Earth is in hydrostatic
equilibrium before the occurrence of an earthquake. For a rotating,
self-gravitating Earth model this means that pressure gradients are
balanced by gradients of the geopotential (e.g. Dahlen & Tromp
1998). Let P denote the initial pressure in the Earth model, let �

denote the gravitational potential associated with the initial distribu-
tion of density ρ, and let ψ denote the centrifugal potential, which
is defined in terms of the Earth’s angular rotation vector Ω by ψ =
− 1

2 [�2r 2 − (Ω · r)2]. Here r is the position vector, r = |r| denotes
the radius and � = |Ω| is the angular rotation rate. In what follows,
we will ignore the non-hydrostatic pre-stress, in which case hydro-
static equilibrium is determined by ∇ P = −ρ∇(� + ψ). This equa-
tion implies that equal surfaces of initial pressure P, density ρ and
geopotential �+ψ coincide. As a result, these level surfaces are ax-
ially symmetric ellipsoids. Because we assume that we can neglect
the non-hydrostatic pre-stress, there is no contradiction between this
assumption and the fact that we use a 3-D density model in the mesh.

Suppose we start with a spherically symmetric, non-rotating Earth
model. The gravitational potential �0 of such an Earth model is
determined by Poisson’s equation: �′′

0 + 2r−1�′
0 = 4πGρ0, where

ρ0 denotes the radial profile of density, G denotes the gravitational
constant and a prime denotes differentiation with respect to radius
r. If we define the magnitude of the gravitational acceleration to be
g0 = �′

0, then we have

g′
0 + 2r−1g0 = 4πGρ0. (1)

The gravitational potential � in a slowly rotating, ellipsoidal
Earth model is given by � = �0 + 2

3 (rεg0 − 1
2 �2r 2)P2(cos θ ) and

the centrifugal potential ψ may be written in the form ψ = − 1
3 �2r 2

[1 − P2(cos θ )], where ε denotes the ellipticity as a function of ra-
dius, P2 is the degree-two Legendre function and θ denotes colati-
tude. The associated gravitational acceleration g is defined in terms
of the gradient of the geopotential by

g = −∇(� + ψ)

= −
[

g0 + 2

3
(εg0 + rε ′g0 + rεg′

0)P2 − 2

3
�2r

]
r̂ − 2

3
εg0∂θ P2θ̂.

(2)

Here g′
0 is determined by eq. (1) and the radial derivative of ellipticity

ε ′ is usually defined in terms of the auxiliary function η = rε ′/ε
(Dahlen & Tromp 1998).

In the weak formulation of the equations of motion in the man-
tle and inner core we shall need the gradient of the gravitational
acceleration, H = ∇g, which is given by

H = −
[

g′
0 + 2

3
(2ε ′g0 + 2εg′

0 + 2rε ′g′
0 + rε ′′g0 + rεg′′

0 )P2

− 2

3
�2

]
r̂r̂ − 2

3
(ε ′g0 + εg′

0)∂θ P2(θ̂r̂ + r̂θ̂) − r−1

[
g0

+ 2

3
(εg0 +rε ′g0 + rεg′

0)P2 − 2

3
�2r + 2

3
r−1εg0∂

2
θ P2

]
θ̂θ̂

− r−1

[
g0 + 2

3
(εg0 + rε ′g0 + rεg′

0)P2 − 2

3
�2r

+ 2

3
r−1εg0 cot θ∂θ P2

]
φ̂φφ̂φ. (3)

The second derivative of ellipticity with respect to radius is deter-
mined by Clairaut’s equation and the second derivative of the grav-
itational acceleration g′′

0 may be obtained by differentiating eq. (1).
In most cases, however, we can neglect the contribution of ellip-

ticity and rotation, since ε is very small (ε � 1/300 at the surface)
and so is the Earth’s rotation rate squared. Under these assumptions,
eqs (2) and (3) reduce to

g = −g0r̂ (4)

and

H = −g′
0r̂r̂ − r−1g0(θ̂θ̂ + φ̂φφ̂φ), (5)

respectively. These are the expressions that we will use in the rest
of the paper.

3.2 Mantle and crust

In a rotating, self-gravitating Earth model, the elastic wave equation
for the mantle and crust may be written in the form (Dahlen & Tromp
1998)

ρ
(
∂2

t s + 2Ω × ∂t s
)

= ∇ · T + ∇(ρs · g) − ρ∇φ − ∇ · (ρs)g + f.

(6)

Here T denotes the stress tensor, which is related linearly to the
displacement gradient ∇s by Hooke’s law (eq. I.6 in Paper I) in an
elastic model, or by the generalization (I.9) in an anelastic model.
The earthquake source is represented by the point force f, which
is given in terms of the moment tensor M by (I.14). The perturbed
gravitational potential φ is determined by Poisson’s equation within
the Earth, ∇2φ = −4πG∇ · (ρs) and by Laplace’s equation in the
rest of space, ∇2φ = 0.

Because Laplace’s equation is defined in all of space, solving
the momentum eq. (6) in conjunction with Poisson’s and Laplace’s
equations is rather daunting from a numerical perspective. The ap-
proach can be simplified considerably by making what is known as
Cowling’s approximation (Cowling 1941), as discussed by Valette
(1987); Dahlen & Tromp (1998) and Chaljub (2000). In this approx-
imation one ignores perturbations φ in the gravitational potential
while retaining the unperturbed gravitational potential. Physically,
this means that we ignore the effects of mass redistribution. Under
this assumption the momentum equation (6) becomes

ρ
(
∂2

t s + 2Ω × ∂t s
) = ∇ · T + ∇(ρs · g) − ∇ · (ρs)g + f. (7)

The associated boundary conditions are that on the free surface
the traction n̂ · T, where n̂ denotes the unit outward normal to the
free surface, needs to vanish. On the core–mantle boundary (CMB)
the normal component of displacement n̂ · s needs to be continuous
and the traction n̂ · T at the bottom of the mantle needs to match
the traction −pn̂ at the top of the outer core, where p denotes the
perturbed pressure in the fluid.

The weak form of the equation of motion eq. (7) is obtained by
taking the dot product with an arbitrary test vector w, integrating
by parts over the volume M of the mantle and crust, and imposing
the stress-free surface boundary condition. Using the definition (5),
this gives∫

M
ρw · ∂2

t s d3r +
∫

M
2ρw · (Ω × ∂t s) d3r

= −
∫

M
∇w : (T + G) d3r + M : ∇w(rs)S(t)

+
∫

CMB
pn̂ · w d2r −

∫
M

ρs · H · w d3r, (8)
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where we have used the continuity of traction at the CMB, and where
we have defined the second-order tensor

G = ρ[sg − (s · g)I]. (9)

Because of the non-symmetric nature of G, we note that our defini-
tion of the double dot product between two second-order tensors A
and B is A : B = Ai j Bi j . Let us mention that it is possible to obtain
a symmetric weak formulation of the gravity terms (Chaljub 2000),
but this is more expensive from a numerical perspective since one
can show that the number of computations is roughly doubled. This is
not necessary in finite-element or spectral-element methods, which
can handle non-symmetric terms.

3.3 Outer core

In the fluid outer core, making the Cowling approximation, the equa-
tion of motion may be written in the form

ρ
(
∂2

t s + 2Ω × ∂t s
) = ∇(κ∇ · s + ρs · g) − ∇ · (ρs)g, (10)

where κ denotes the bulk modulus of the fluid. Under the assumption
of hydrostatic equilibrium prior to the earthquake, the equation of
motion in the fluid may be rewritten in the form

∂2
t s + 2Ω × ∂t s = ∇(ρ−1κ∇ · s + s · g) + ρ−1g−2κ(∇ · s)N 2g,

(11)

where g = |g| and

N 2 = (ρ−1∇ρ − ρκ−1g) · g (12)

is the Brunt-Väisälä frequency (e.g. Valette 1986, 1987; Dahlen
& Tromp 1998; Chaljub et al. 2002). Following the ideas of these
authors, we assume that the fluid is stably stratified and isentropic,
which means that N 2 = 0. Note that this is an approximation since
strictly speaking N 2 
= 0 in the PREM outer core. However, it is a
very reasonable one, as will be illustrated in Section 4, because it
only affects extremely long-period modes confined to the outer core.
Using this approximation, the equation of motion in the fluid outer
core reduces to

∂2
t s + 2Ω × ∂t s = ∇(ρ−1κ∇ · s + s · g). (13)

Next, we introduce a scalar potential χ such that the fluid pressure
p = −κ∇ · s may be written as

p = −ρ∂tχ + ρg · s, (14)

and we define a vector u such that

∂t s = ∇χ + u. (15)

Note that the scalar potential χ introduced in Paper I is a particular
case of eqs (14) and (15) in the absence of gravity and rotation.
Upon differentiating eq. (14) with respect to time and using eq. (15)
we obtain the scalar wave equation

κ−1ρ∂2
t χ = ∇ · (∇χ + u) + κ−1ρg · (∇χ + u). (16)

Substitution of eqs (15) and (14) in eq. (13) yields a precession
equation for u:

∂t u + 2Ω × u = −2Ω × ∇χ. (17)

Let us write the angular rotation vector Ω as Ω= �ẑ. Then the
solution to eq. (17) may be written in the form

u = [A cos(2�t) + B sin(2�t)]x̂ + [−A sin(2�t) + B cos(2�t)]ŷ,

(18)

where the coefficients A and B are determined by

∂t A = 2�[cos(2�t)∂yχ + sin(2�t)∂xχ ],

∂t B = 2�[sin(2�t)∂yχ − cos(2�t)∂xχ ].
(19)

Note that the vector u has no z-component, i.e. ẑ · u = 0.
In the absence of rotation, eq. (16) reduces to

κ−1ρ∂2
t χ = ∇2χ + κ−1ρg · ∇χ. (20)

Finally, if we ignore the effect of self-gravitation, we obtain

κ−1ρ∂2
t χ = ∇2χ. (21)

Note that this equation, written in the strong form, is different from
(I.21) in Paper I, because of the gradient of ρ−1. However, in the
numerical implementation of the weak form, after integration by
parts, the two forms are equivalent because the mass matrix is exactly
diagonal in the SEM.

The weak form of eq. (16) is obtained by multiplying by an arbi-
trary test function w and integrating by parts, using the continuity
of the normal component of velocity:∫

OC
κ−1ρw∂2

t χ d3r = −
∫

OC
(∇w) · (∇χ + u) d3r

+
∫

OC
κ−1ρwg · (∇χ + u) d3r

+
∫

CMB
wn̂ · ∂t s d2r −

∫
ICB

wn̂ · ∂t s d2r.

(22)

In the domain decomposition between the fluid outer core and the
solid inner core and mantle, we match the normal component of
velocity by taking n̂ · ∂t s at the bottom of the mantle and using
it in the surface integral over the CMB in eq. (22), and by taking
n̂ · ∂t s from the top of the inner core and using it in the surface
integral over the ICB in eq. (22). This is identical to the fluid/solid
domain decomposition approach adopted in Paper I. The continuity
of traction is honoured by calculating the fluid pressure p from
eq. (14) based upon ∂tχ in the fluid and the normal component of
displacement n̂ · s taken from the solid at the bottom of the mantle
(CMB) or at the top of the inner core (ICB). This fluid pressure is
then used in the surface integral over the CMB in eq. (8) and in the
surface integral over the ICB in eq. (23).

3.4 Inner core

The weak form of the equation of motion in the solid inner core is
similar to eq. (8):∫

IC
ρw · ∂2

t s d3r +
∫

IC
2ρw · (Ω × ∂t s) d3r

= −
∫

IC
∇w : (T + G) d3r −

∫
ICB

pn̂ · w d2r

−
∫

IC
ρs · H · w d3r. (23)

Note that the inner core–outer core interactions, represented by the
surface integrals over the ICB in eqs (22) and (23), also honour
continuity in traction and continuity of the normal components of
displacement and velocity.

3.5 Complications owing to the oceans

Those areas of the Earth that are covered by a water layer (oceans
or large lakes) are subject to a slightly more complicated weak

C© 2002 RAS, GJI, 150, 303–318



308 D. Komatitsch and J. Tromp

formulation of the problem. The weak form of the equations of
motion in the solid Earth (mantle and crust) covered by water is∫

M
ρw · ∂2

t s d3r +
∫

M
2ρw · (Ω × ∂t s) d3r

= −
∫

M
∇w : (T + G) d3r + M : ∇w(rs)S(t)

+
∫

CMB
pn̂ · w d2r−

∫
OCB

pn̂ · w d2r −
∫

M
ρs · H · w d3r,

(24)

where OCB denotes the ocean-crust boundary (i.e. the ocean floor).
What we need is an expression for the fluid pressure p at the OCB.
In the oceans, the waves satisfy the fluid wave eq. (13), which can
be rewritten as

∂2
t s + 2Ω × ∂t s = −∇(ρ−1 p − s · g). (25)

We shall assume that the oceans are incompressible, which means
that the entire water column moves as a whole as a result of the nor-
mal displacement n̂ · s of the seafloor. This is a good approximation
at the periods considered in this study, as will be demonstrated in
Section 4, because the thickness of the oceans is small compared
with the wavelength of the seismic waves we are interested in. This
would cease to be true at very short periods, typically below roughly
5 s. We only wish to reproduce the effect of the load at the ocean
floor, not phases that actually propagate in the oceans themselves
(e.g. the tsunami).

Suppose that the water column has a local thickness h. Upon
integrating eq. (25) over the water column, taking into account the
variations of gravity with radius according to eq. (1), we obtain the
local result

p = ρwhn̂ · ∂2
t s + 2ρwhn̂ · (Ω × ∂t s) + 4πGρ2

whn̂ · s, (26)

where ρw denotes the density of sea water (ρw � 1020 kg m−3). As
a result, the weak form of the equations of motion in the crust and
mantle eq. (24) becomes∫

M
ρw · ∂2

t s d3r +
∫

OCB
ρwh(w · n̂)

(
n̂ · ∂2

t s
)
d2r

+
∫

M
2ρw · (Ω × ∂t s) d3r +

∫
OCB

2ρwh(w · n̂)[n̂ · (Ω × ∂t s)] d2r

= −
∫

M
∇w : (T + G) d3r + M : ∇w(rs)S(t) −

∫
M

ρs · H · w d3r

+
∫

CMB
pn̂ · w d2r −

∫
OCB

4πGρ2
wh(n̂ · w)(n̂ · s) d2r. (27)

In practice, the ocean load represents a small effect, and the grav-
ity and rotation terms in eq. (26) involve additional small corrections
that can be safely neglected. Hence we solve the following equation
in the mantle, moving the Coriolis term to the right-hand side:∫

M
ρw · ∂2

t s d3r +
∫

OCB
ρwh(w · n̂)

(
n̂ · ∂2

t s
)

d2r

= −
∫

M
2ρw · (Ω × ∂t s) d3r −

∫
M

∇w : (T + G) d3r

+ M : ∇w(rs)S(t) −
∫

M
ρs · H · w d3r +

∫
CMB

pn̂ · w d2r.

(28)

The local thickness of the oceans, h, is taken from a bathymetry
map, as explained in Section 2 (see Fig. 5). Note that this means that

we can very efficiently take into account the effects of the oceans
by a simple modification of the mass matrix for the points (more
precisely the degrees of freedom) located at the ocean floor, as can
be concluded from the second term on the left-hand side of eq. (28),
which is a mere surface integral along the OCB. Note also that
the compressional-wave velocity in the oceans does not appear in
eqs (27) and (28).

3.6 Discretization and time marching

Most of the terms in the weak formulations eqs (8), (22), (23) and
(28) were presented in Paper I. In this section we give explicit ex-
pressions for the elemental form of the terms that arise as a result of
the Earth’s rotation and self-gravitation in the context of the Cowling
approximation.

The weak form of the Coriolis term in eqs (8), (23) and (28) for
an element �e is∫

�e

2ρw · (Ω × ∂t s) d3r ≈ 2�

n∑
α,β,γ=0

ωαωβωγ J αβγ ραβγ

×
3∑

i, j=1

w
αβγ

i εi3 j ṡ
αβγ

j . (29)

Here J αβγ is the Jacobian evaluated at the Gauss–Lobatto–Legendre
points, ωα > 0, for α = 0, . . . , n, denote the weights associated with
the Gauss–Lobatto–Legendre quadrature (Canuto et al. 1988, p. 61),
and εi jk is the alternating tensor. We have used the expansions (I.31)
and (I.32) of Paper I for the displacement field s and the test vector
w. Note that the Coriolis matrix eq. (29) is diagonal and has no
contribution in the z-direction.

Self-gravitation in the context of the Cowling approximation con-
tributes two terms to eqs (8) and (23). The first contribution can
be incorporated in the calculation of the stiffness matrix by making
the substitution T → T + G, remembering that G is non-symmetric.
The second gravity contribution has the weak form∫

�e

ρs · H · w d3r ≈
n∑

α,β,γ=0

ωαωβωγ J αβγ ραβγ

×
3∑

i, j=1

w
αβγ

i Hαβγ

i j sαβγ

j . (30)

Note that this gravity term is diagonal.
The only new fluid term that arises in the context of self-

gravitation and rotation is
∫

�e

κ−1ρwg · (∇χ + u) d3r ≈
n∑

α,β,γ=0

ωαωβωγ J αβγ wαβγ (κ−1ρ)αβγ

×
3∑

i=1

gαβγ

i

[
(∂iχ )αβγ + uαβγ

i

]
,

(31)

where (∂iχ )αβγ is given by (I.45) in Paper I.
Schematically, the global system of equations we need to solve

may be written in the form

MÜ + WU̇ + KU + BU = F, (32)

where U denotes the displacement vector at all gridpoints in the
global mesh, M the global diagonal mass matrix, W the global
Coriolis matrix, K the global stiffness matrix, B the boundary inter-
actions at the CMB and the ICB and F the source term.
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The presence of an ocean layer, in the context of the equiva-
lent ocean load formulation introduced above, only affects the nor-
mal component of displacement at the ocean floor, i.e. at the top
of the mesh. All that needs to be done for these points is to re-
place the mass matrix M by M + m, where m denotes the ‘sur-
face mass’ that represents the ocean load. This modified mass ma-
trix remains globally diagonal, and inverting it involves a simple
division.

The presence of rotation is taken into account in the solid re-
gions by adding the contribution of the Coriolis force, which is a
straightforward modification of the SEM algorithm since the term
is diagonal, which means that it can be added directly to the x and
y components of acceleration in eq. (32) at the global level, after
assembly of the system. In the outer core we need to keep track of
the coefficients A and B by marching eq. (19). This contribution
turns out to be extremely small, but is included in this study for
completeness.

In Paper I the momentum eq. (32) was marched using a classical
explicit second-order finite-difference scheme, which is a particular
case of the general Newmark scheme for hyperbolic equations (e.g.
Hughes 1987). In order to perform the coupling between solid and
fluid regions in the domain decomposition approach, the scheme
is implemented in a staggered predictor–multicorrector format, fol-
lowing the ideas of Park & Felippa (1980) and Felippa & Deruntz
(1984). In addition, in Paper I the memory variable equations used
to mimic attenuation with a constant quality factor Q were marched
separately using a modified second-order Runge–Kutta scheme. In
this paper, we still make use of these two schemes, but in addi-
tion we need to march the precession eq. (19). A second-order
Runge–Kutta scheme could be used for this purpose, but consid-
ering that the rotation rate of the Earth is slow compared with the
timescale of wave propagation, we instead use a simple Euler time-
integration scheme. The properties of the time schemes, as well
as the value of the time step �t , are unchanged with respect to
Paper I.

4 N U M E R I C A L R E S U L T S

In this section we first carefully benchmark the implementations of
self-gravitation and the oceans for the spherically symmetric model
PREM by comparing the SEM results with the normal-mode solu-
tion (e.g. Dahlen & Tromp 1998). Subsequently, we study the effects
of rotation on surface waves based upon a south–north propagation
path, which is susceptible to Coriolis coupling. In the last part of
this section we combine the effects of self-gravitation, the oceans,
rotation, anisotropy and attenuation with a 3-D mantle model, a 3-D
crustal model, ellipticity, topography and bathymetry to simulate
two real earthquakes in Vanuatu and Bolivia.

All of the calculations in this section incorporate an anisotropic
asthenosphere as in PREM (the upper 220 km of the Earth’s mantle).
Attenuation is included in the Vanuatu and Bolivia calculations, but
not in the tests for self-gravitation, the oceans and rotation, in order
to validate these effects individually. Anisotropy and attenuation in
the context of the SEM were validated in Paper I. The normal-mode
and SEM calculations also include self-gravitation based upon the
Cowling approximation, unless explicitly stated otherwise. We use
the same time integration and mesh parameters as in Paper I, i.e. N =
240 spectral elements at the surface in each direction for each of the
six chunks of the cubed sphere mesh, a time step of �t = 0.20 s
and a Heaviside source time-function. The results are subsequently
convolved with a Gaussian function with a half-duration of 18 s in

the case of the validation tests and for the Vanuatu earthquake, and 15
s in the case of the Bolivia earthquake (see Fig. I.12 in Paper I). The
full mesh has roughly 180 million global points (corresponding to
approximately 483 million degrees of freedom, since we solve for the
three components of displacement at each gridpoint, except in
the fluid outer core, where we solve for the scalar potential), and the
calculations are performed on a 151-processor PC cluster with
76 Gb of memory.

4.1 Validation of self-gravitation in Cowling
approximation

First, let us illustrate the magnitude of the gravitational contribu-
tions. We compare the results of an SEM calculation without gravity
with the normal-mode solution with the full implementation of self-
gravitation. Because the influence of gravity is mainly noticeable at
long periods (typically greater than 100 s), for this test we convolve
the synthetics with a Gaussian function with a half-duration of 18 s
and low-pass filter the results at a corner period of 120 s using a
six-pole two-pass Butterworth filter. We choose a record length of
2 hours in order to include R1 and G1–G2. In Fig. 6 we show the re-
sults at an epicentral distance of 100◦ for a large shallow Mw = 8.2
event at a depth of 15 km (the Irian Jaya earthquake of Paper I,
see Figs I.13–18). At these long periods there is a large effect as-
sociated with gravity on the vertical and longitudinal components,
whereas the transverse component is unaffected. The fact that the fit
with normal modes is perfect on the transverse component demon-
strates that the SEM synthetics in the absence of gravity are very
accurate. Closer to the antipode, self-gravitation has a small effect
on the transverse component because the spheroidal motion has a
small transverse component (Dahlen & Tromp 1998), as illustrated
in Fig. 7.

Next, we demonstrate that the Cowling approximation eq. (7) is
a good approximation of the full equations of motion eq. (6). The
normal-mode calculation software has the ability to compute cata-
logues with full gravity as well as in the Cowling approximation.
In Fig. 8, we show the vertical and longitudinal components of dis-
placement at an epicentral distance of 100◦ for the shallow Irian
Jaya event. The solid lines are synthetics that incorporate perturba-
tions in the gravitational potential, and the dotted lines are synthetics
calculated based upon the Cowling approximation. The agreement
between the two curves is very good, which shows that the Cowling
approximation is satisfactory and can generally be safely used in
global seismology. We do not show the transverse component of
displacement because it is not affected by gravity.

Finally, we show that the implementation of self-gravitation in
the SEM based upon the Cowling approximation eqs (8), (22) and
(23) is accurate. As mentioned earlier, the implementation of self-
gravitation in the context of the SEM was studied by Chaljub (2000).
We adopt a similar approach here, except that we use a simpler non-
symmetric form as explained in Section 3. In Fig. 9 we compare the
SEM results with the normal-mode solution in the Cowling approx-
imation for the shallow Irian Jaya event at an epicentral distance
of 100◦. We focus on multiorbit surface waves up to R4 and G5 at
long periods. Compared with Fig. 6, we fit the large signal owing
to gravity very well, as is confirmed by the close-up on the vertical
component in Fig. 10. The SEM synthetics are very accurate even
for R4 and G5. R3 and R4 exhibit weak numerical dispersion, while
G5 is perfectly reproduced. Because the mode synthetics are only
quasi-analytical, and therefore contain some numerical errors (e.g.
related to numerical integration and root-finding routines), we do
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Figure 6. Vertical (top), longitudinal (middle) and transverse (bottom)
components of displacement of the normal-mode solution for the shallow
Irian Jaya event with the full implementation of gravity (solid line) and the
SEM solution without gravity (dotted line) at an epicentral distance of 100◦.
The results have been low-pass filtered at a corner period of 120 s. At these
long periods there is a large effect owing to gravity on the vertical and lon-
gitudinal components. The transverse component is unaffected. The total
duration of the simulation is two hours in order to show R1 and G1–G2.

not show the difference between the SEM and normal-mode syn-
thetics, since this is not an objective measure of the accuracy of
the SEM. Note that in Fig. 9, the normal-mode reference is based
upon the Cowling approximation, while it is based upon the full
implementation of gravity in Fig. 6, but we know from Fig. 8 that
the two normal-mode results agree very well. Fig. 10 also validates
the N 2 = 0 approximation used in eq. (13) since our SEM results
fit the normal-mode calculation for PREM without the N 2 = 0 as-
sumption very well. Note also that attenuation is not included in this
simulation, therefore the amplitude of the multiorbit surface waves
decays more slowly.

At higher frequencies, the main effect of gravity for shallow
events is to slow down the Rayleigh wave slightly, as observed by
Chaljub (2000). To illustrate this, in Fig. 11 we show the original
results (i.e. the results for the Gaussian source with a half-duration

Figure 7. Transverse component of displacement of the PREM normal-
mode solution for the shallow Irian Jaya event with the full implemen-
tation of gravity (solid line) and the SEM solution without gravity (dot-
ted line) at an epicentral distance of 178◦. At these long periods, close
to the antipode the transverse motion has a small spheroidal component
(Dahlen & Tromp 1998). Therefore, self-gravitation has a small effect on
the transverse component. Note that G1 and G2 are almost completely su-
perimposed.

of 18 s, before filtering at 120 s) at an epicentral distance of 60◦

for the vertical component of displacement. In the absence of self-
gravitation the Rayleigh wave is faster than in the Cowling approxi-
mation. When we introduce self-gravitation in the SEM we fit most
of the discrepancy. A small phase shift remains in the coda of the
Rayleigh wave; this is attributed to a slight mesh subsampling that
induces numerical dispersion in the SEM results.

Figure 8. Vertical (top) and longitudinal (bottom) components of PREM
normal-mode synthetics with the full implementation of gravity (solid line)
and in the Cowling approximation (dotted line) for a shallow event at an
epicentral distance of 100◦. Compared with Fig. 6, the agreement between
the two curves is satisfactory, which shows that the Cowling approximation
is a good approximation of full gravity.
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Figure 9. Vertical (top), longitudinal (middle) and transverse (bottom) components of the PREM normal-mode solution in the Cowling approximation (solid
line) compared with the SEM displacement (dotted line) for the shallow Irian Jaya event at an epicentral distance of 100◦. One can observe the multiorbit
surface waves up to R4 and G5, which are very accurately matched. R3 and R4 exhibit very weak numerical dispersion, while G5 is perfectly reproduced. We
have low-pass filtered the results at a corner period of 120 s. Compared with Fig. 6 we fit the large gravitational signal very well, as is confirmed by the close-up
on the vertical component in Fig. 10. The transverse component is not affected by gravity. Note that attenuation is not included in this simulation; therefore the
amplitude of the multiorbit surface waves decays more slowly.
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Figure 10. Close-up on the vertical component (Fig. 9) of the PREM
normal-mode solution in the Cowling approximation (solid line) and the
SEM displacement (dotted line) for the shallow Irian Jaya event at an epi-
central distance of 100◦. We have low-pass filtered the results at a corner
period of 120 s. Compared with Fig. 6 we fit the large gravitational signal
very well.

Figure 11. Vertical component of displacement for a PREM normal-mode
calculation in the Cowling approximation (solid line) compared with the
SEM result in the absence of gravity (top, dotted line) and the SEM result
based upon the Cowling approximation (bottom, dotted line). The results are
for the shallow Irian Jaya earthquake using a Gaussian source with a half-
duration of 18 s. In the absence of self-gravitation the Rayleigh wave arrives
earlier. When we introduce self-gravitation in the SEM we fit most of the
discrepancy. A small phase shift remains in the coda of the Rayleigh wave;
this is attributed to a slight mesh subsampling, which induces numerical
dispersion in the SEM results.

4.2 Effects of the oceans

The presence of the oceans is mostly relevant for the dispersion
of Rayleigh waves in the case of shallow events, as well as for
free-surface reflected phases, such as PP, SS and SP. To illustrate
the magnitude of the effect of the oceans on wave propagation,
Fig. 12 shows results of an SEM calculation for PREM without the
ocean layer (therefore using an Earth radius of 6368 km instead of

Figure 12. Vertical (top), longitudinal (middle) and transverse (bottom)
components of displacement for a PREM normal-mode calculation with a
3 km-thick ocean layer (solid line) and for the SEM without the ocean layer
(dotted line). The results are for the shallow Irian Jaya earthquake recorded
at an epicentral distance of 60◦. The Gaussian source has a half-duration of
25 s. The oceans have a small effect on P and S multiples and a large effect
on the Rayleigh wave, which is slowed down considerably. The dispersion of
the Rayleigh wave also changes dramatically. The Love wave is not affected
by the presence of the oceans.

6371 km), compared with the PREM normal-mode solution com-
puted with the ocean layer. The event is the shallow Irian Jaya earth-
quake, and the station is located at the ocean floor at an epicentral
distance of 60◦. The Gaussian source has a half-duration of 25 s.
The oceans have a small effect on P and S multiples and a large
effect on the Rayleigh wave, which is slowed down significantly.
The dispersion of the Rayleigh wave also changes dramatically. The
Love wave is not affected by the presence of the oceans.

The most intuitive way to incorporate the effect of the oceans in
the SEM is by defining a mesh of fluid elements, just as we do for
the outer core. In principle, we can couple the ocean and crustal
regions in the SEM based upon a domain-decomposition algorithm,
as we do for the outer core at the ICB and the CMB (see Paper I for
details). Unfortunately, closer examination reveals that the problem

C© 2002 RAS, GJI, 150, 303–318



SE simulations of global seismic wave propagation—II 313

is much more challenging than it appears. First, the compressional-
wave velocity in the oceans (�1.45 km s−1) is much smaller than
the smallest shear-wave velocity in the PREM crust (�3.2 km s−1).
Therefore, in order to maintain a similar number of grid points per
wavelength throughout the mesh, we would need far more points
in the lateral direction in the oceans than in the crust (typically
twice as many since 3.2/1.45 � 2). Because the crust is already the
region of the mesh that has the highest density of elements, adding
ocean elements would be very expensive in terms of memory and
CPU requirements. Additionally, as at the ICB and the CMB, we
would need to iterate the time scheme to couple the oceans and
the crust in the domain decomposition, thereby increasing the CPU
requirements even more. Because the oceans are very thin compared
with the rest of the model (an average ocean thickness of 3 km
compared with an average crustal thickness of 21 km and an Earth
radius of 6371 km), the aspect ratio (i.e. the ratio of the lateral to the
radial dimensions of the elements) of these ocean elements would be
very large. This often induces stability problems in the time scheme
in finite-element methods (e.g. Hughes 1987). Another drawback
of meshing the oceans explicitly is that we would need to impose
a minimum radial size (i.e. thickness) for the elements, typically
3 km, in order to avoid stability problems (the time step �t tends to
zero when the element size tends to zero), and therefore we could
not handle shallow oceans.

Because we would roughly need to double the number of elements
in the oceans relative to the crust, we could no longer use a geometri-
cally conforming mesh, and would need to turn to a non-conforming
mesh. This introduces several theoretical, numerical and practical
complications. The general framework for non-conforming finite-
element approximations is called the ‘mortar’ method (Bernardi
et al. 1990, 1994; Chaljub et al. 2002). In simple geometrical cases,
straightforward implementations that are particular cases of the mor-
tar method can be used (Rønquist 1996; Kopriva 1996). For our
problem, the easiest implementation is to introduce a mesh of small
spectral elements in the oceans, the corners of which are the Gauss–
Lobatto–Legendre points of a larger spectral element in the crust,
as illustrated in Fig. 13. This is a particular case of the least-squares
matching method of Kopriva (1996), which in turn can be seen as a
particular case of the mortar method. In this approach one matches
the two subdomains based upon a surface integral in which the fields
at the contact between the fluid and solid regions are projected based
upon a least-squares algorithm.

In Section 3 we mentioned that by assuming that the oceans are
incompressible, which is a reasonable approximation considering
the fact that the thickness of the oceans is much smaller than the

Figure 13. Geometrically non-conforming mesh that can be used to im-
plement the ocean coupling technique based upon the least-squares method
of Kopriva (1996). The corners of the small fluid spectral elements in the
oceans correspond to the Gauss–Lobatto–Legendre points of the larger
spectral elements in the crust. These points are non-evenly spaced (e.g.
Canuto et al. 1988).

Figure 14. Vertical (top) and longitudinal (bottom) components of dis-
placement for a PREM normal-mode calculation with a 3 km-thick ocean
layer (solid line) and for the SEM with the same ocean layer (dotted line).
The results are for the shallow Irian Jaya earthquake recorded at an epicentral
distance of 60◦. The Gaussian source has a half-duration of 25 s. Compared
with Fig. 12, we fit the small effect of the oceans on P and S multiples per-
fectly, and most of the large effect on the Rayleigh wave, which is slowed
down significantly and has a different dispersion. The small discrepancy
in the coda of the Rayleigh wave is mainly attributed to the approximate
ocean load formulation of eq. (28). The transverse component, which is not
affected by the presence of the oceans, is not shown.

wavelengths under consideration, we can avoid explicitly meshing
the oceans (this would cease to be true at very short periods). Instead,
the effect of the oceans is represented by a mere surface integral.
In order to assess the validity of this approximation, in Fig. 14 we
perform a comparison between the PREM normal-mode solution
with an ocean and an SEM simulation with a 3 km ocean introduced
as an equivalent load for the same event as in Fig. 12. Compared
with Fig. 12, we fit the small effect on P and S multiples perfectly,
and we correctly reproduce most of the effect on the Rayleigh wave,
which is slowed down significantly by the oceans. The Love wave,
which is not affected by the presence of the oceans, is not shown.
There is a small phase shift in the coda of the Rayleigh wave in the
SEM results. We attribute this effect to the fact that the ocean load
formulation of eq. (28) is approximate. Let us mention that a slight
mesh subsampling that induces numerical dispersion in the SEM
results might play a role as well. Some of the observed discrepancies
might come from the normal-mode solution itself, which is not
perfect since it does not include the tsunami branch. However, tests
not shown here conducted with the SEM using the least-squares
method of Kopriva (1996) based upon the implementation illustrated
in Fig. 13 gave results that were slightly closer to the mode solution,
therefore we believe that most of the discrepancy comes from the
ocean load approximation itself.

Let us finally mention that for very long simulations of several
tens of thousands of time steps in tests not presented here we noticed
some instability problems with our implementation of the method of
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Kopriva (1996), while no problems were encountered for the ocean
load formulation. We attribute these long-term instability prob-
lems to slowly accumulating errors in the least-squares projection
between the non-conforming meshes.

4.3 Effects of the Earth’s rotation

As we mentioned in Section 3.6, incorporating the Coriolis force in
SEM synthetics involves a trivial modification of the x and y compo-
nents of acceleration. In contrast, calculating time-domain normal-
mode synthetics that fully incorporate rotation is a non-trivial matter,
especially at shorter periods, because it involves cross-coupling be-
tween spheroidal and toroidal mode branches. Therefore, we com-
pare SEM synthetics with rotation with SEM synthetics without
rotation to illustrate the size of this effect. We include ellipticity in
the calculations and choose a south–north propagation path for an
event located at the South Pole in order to maximize the effects of
Coriolis coupling. The effect of rotation is to couple the P-SV motion
with SH motion, and vice versa. Therefore, we expect some trans-
fer of energy between the vertical and longitudinal components and
the transverse component. We use the moment tensor of the shallow
Irian Jaya event in order to generate a large-amplitude surface wave.
In Figs 15 and 16 we show the vertical and transverse components of
displacement in the presence and absence of rotation at an epicentral
distance of 120◦ along the Greenwich meridian. We also show the
residuals (i.e. the difference between the two results) in a separate
panel for clarity. In this case the residuals are meaningful because we

Figure 15. Vertical (top) component of displacement at an epicentral dis-
tance of 120◦ from a shallow event located at the South Pole. The ray paths
are south–north and the event generates a large-amplitude surface wave for
which we expect Coriolis coupling to be most significant. The SEM results
with rotation are represented by the solid line and those without rotation by
the dotted line. The residuals (difference between the two results, bottom)
show that the effects of rotation can be as large as 3.5 per cent of the maxi-
mum amplitude of the surface wave. The large residual at 3000 s coincides
with the arrival of the Love wave, which has acquired a vertical component
of motion.

Figure 16. Transverse (top) component of displacement at an epicentral
distance of 120◦ from a shallow event located at the South Pole. The SEM
results with rotation are represented by the solid line and those without
rotation by the dotted line. The residuals (bottom) show that the effects of
rotation can be as large as 3.5 per cent of the maximum amplitude of the
surface wave. The effect of rotation on the transverse component shown in
this figure should be compared with the effect on the vertical component
shown in Fig. 15.

compare SEM synthetics with and without rotation, both of which
have very similar numerical dispersion. One can observe that the
maximum effect owing to rotation at this station is of the order of
3.5 per cent of the maximum amplitude of the surface wave.

4.4 3-D simulations for two real events

As a final application of the SEM we combine all the complica-
tions of a full 3-D Earth model. The simulations presented in this
section include anisotropy, attenuation, self-gravitation, the oceans,
rotation, ellipticity, topography and bathymetry, a 3-D mantle model
and a 3-D crustal model. We first model an event with a moment
magnitude Mw = 7.4 that occurred on 1999 November 26 in Vanu-
atu at a depth of 15 km. Its focal mechanism is given in Fig. 17. The
source has a half-duration of 18 s. This event gives us the opportunity
to study the effects of the thin oceanic crust (∼7 km) and the water
layer on surface waves travelling across the Pacific. PREM includes
a 3 km thick water layer and has a peculiar crust with a thickness of
21.4 km; therefore we expect a 3-D SEM simulation to fit the data
much better. Fig. 18 shows the three components of displacement
convolved with the instrument response (which effectively gives
ground velocity) and low-pass filtered at a corner frequency of 40 s
at station MAJO in Japan, at an epicentral distance of 60◦. We use
a six-pole two-pass Butterworth filter. Note how the normal-mode
synthetics for PREM predict a Love wave with a duration which is
much too long, and a Rayleigh wave that arrives much too late. The
SEM synthetics incorporate the thin oceanic crust and predict the
arrival time of the Rayleigh wave much better, as well as the short
duration of the Love wave (although it arrives a bit too early). An
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Figure 17. Focal mechanisms for the shallow 1999 November 26, Vanuatu
earthquake which occurred at a depth of 15 km and had a moment magnitude
Mw = 7.4 (left) and the deep 1994 June 9, Bolivia earthquake which occurred
at a depth of 647 km and had a moment magnitude Mw = 8.2 (right).

even more spectacular example of a fast Rayleigh wave is shown in
Fig. 19 for the vertical component of the Pasadena, California,
TriNet station PAS, at an epicentral distance of 86◦, where the
Rayleigh wave arrives 85 s earlier than in PREM. Note that the

Figure 18. Vertical (top), longitudinal (middle) and transverse (bottom) components of displacement convolved with the instrument response and low-pass
filtered at a corner frequency of 40 s at station MAJO in Japan, for the PREM normal-mode solution (left, dotted line) and a fully 3-D SEM simulation (right,
dotted line) compared with real data (solid line). The event is located in Vanuatu and the path is therefore mostly oceanic. The epicentral distance is 60◦. Note
how the PREM normal-mode synthetics predict a Love wave whose duration is much too long, and a Rayleigh wave which arrives much too late. The SEM
synthetics incorporate the thin oceanic crust and predict the arrival time of the Rayleigh wave, as well as the short duration of the Love wave.

3-D SEM synthetic matches this early arrival very nicely and tracks
the phase of the Rayleigh wave quite well.

Our next fully 3-D simulation is for a large Mw = 8.2 event at a
depth of 647 km (the Bolivia earthquake of Paper I, see Figs I.20–
24). Its focal mechanism is given in Fig. 17. The source has a half-
duration of 15 s. The seismograms are recorded at TriNet station PAS
in Pasadena, California, at an epicentral distance of 68◦. Again, the
SEM synthetics are convolved with the instrument response and
low-pass filtered at a corner frequency of 40 s. The fit in Fig. 20
is significantly improved, in particular the large SKS, sSKS and SS
phases between 1400 and 1700 s, as well as the Rayleigh wave
around 2000 s. The improvement obtained with the 3-D SEM simu-
lation is less spectacular than in Figs 18 and 19 because the fit based
upon PREM was already very good.

5 C O N C L U S I O N S

We have extended the spectral-element method for global seismic
wave propagation developed in Paper I (Komatitsch & Tromp 2002)
to incorporate the effects of 3-D mantle and crustal models, the
oceans, rotation and self-gravitation in the context of the Cowling
approximation. Therefore, the SEM can now accommodate the full
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Figure 19. Vertical component of displacement convolved with the instrument response and low-pass filtered at a corner frequency of 40 s at TriNet station
PAS in Pasadena, California, for the PREM normal-mode solution (left, dotted line), and a fully 3-D SEM simulation (right, dotted line), compared with real
data (solid line). The event is located in Vanuatu and the path is therefore mostly oceanic. The epicentral distance is 86◦. The Rayleigh wave arrives 85 s earlier
than in PREM. Note that the 3-D SEM synthetic matches this early arrival very nicely and tracks the phase of the Rayleigh wave quite well.

Figure 20. Vertical component of displacement convolved with the instru-
ment response and low-pass filtered at a corner frequency of 40 s at station
PAS in Pasadena, California, for an SEM simulation in PREM (top, dotted
line) and a fully 3-D SEM simulation (bottom, dotted line) compared with
real data (solid line). The event is located in Bolivia and the path is therefore
mostly continental. The epicentral distance is 68◦. The 3-D SEM simula-
tion improves the fit to the data significantly, in particular the large SKS,
sSKS and SS phases between 1400 and 1700 s, as well as the Rayleigh wave
around 2000 s. The improvement is less spectacular than in Figs 18 and 19
because the fit obtained based upon PREM was already very good for this
station.

complexity of realistic 3-D Earth models. Specifically, we incor-
porate lateral variations in P-, S-wave velocity and density in the
mantle, as well as a 3-D crustal model, and we show how to in-
troduce the ellipticity, topography and bathymetry of the Earth. We
also show how to take into account the oceans, rotation and self-
gravitation. The effect of the oceans on global wave propagation is
efficiently introduced based upon an equivalent surface load integral
that does not require an explicit meshing of the oceans, thus greatly
simplifying the method and reducing the CPU time. We validate
the implementations of self-gravitation and the oceans based upon

comparisons with PREM normal-mode synthetics at periods greater
than 20 s for self-gravitation and 25 s for the oceans. For long-period
multiorbit surface waves we accurately reproduce the effect of self-
gravitation up to R4. Contrary to what is often assumed, we show that
for some source–receiver configurations the effects of the oceans,
self-gravitation and rotation can be significant. Both self-gravitation
and the oceans have the effect of slowing down the Rayleigh wave.

As a first fully 3-D application we consider data from two earth-
quakes: a shallow 1997 Mw = 7.4 event in Vanuatu and the great
1994 Mw = 8.2 deep Bolivia event. For the Vanuatu event we show
that Rayleigh waves on trans-Pacific paths can arrive more than 85 s
earlier than in PREM, and that Love waves are much shorter in dura-
tion than in PREM. For the Bolivia event we demonstrate that with
a fully 3-D simulation the fit to the data is improved compared with
the same calculation in PREM.

We believe that the SEM is the method of choice for the simulation
of global seismic wave propagation in fully 3-D Earth models. Thus
far, no other technique is capable of accurately incorporating all the
complexities associated with this problem. The main current draw-
back of the SEM lies in the computational cost of the large-scale
3-D simulations. The calculations presented in this paper require
151 processors on a parallel computer, several tens of Gigabytes of
distributed memory, and use tens of hours of CPU time, depend-
ing on the desired length of the time-series. Such requirements may
seem prohibitive, but several factors play in favour of the SEM.
First, very efficient and relatively cheap parallel computers such as
PC clusters (also known as ‘Beowulfs’) are now available to individ-
ual researchers (Sterling et al. 1999; Komatitsch & Tromp 2001).
On such machines the SEM offers superior accuracy compared with
other techniques, such as finite-difference or pseudospectral meth-
ods, for a comparable or even lower cost. Secondly, extremely pow-
erful computers are now under development that will revolutionize
parallel computing over the next few years. The world’s fastest com-
puter as of 2002, the Earth Simulator at JAMSTEC, has a capac-
ity of 40 Tera floating point operations per second (1 Teraflops =
1012 flops). On such a computer we estimate that all the calcula-
tions presented in this paper would run in 30 min or less. Fig. 21,
adapted from Thomas Sterling’s Supercomputing 2000 presenta-
tion (Sterling 2000), shows an extrapolation from 1993 to 2010
of the speed of the fastest computer in the world, based upon the
Top500 list of supercomputers (Meuer et al. 2001). The curve shows
that we may reach a computer capable of 1 Petaflop = 1 million
Gigaflops = 1015 flops around the year 2010. On such a machine
the calculations presented in this paper would very likely run in less
than 30 s. Fig. 21 also shows a tentative estimate of the expected
evolution of processor technology over the next ten years. One can
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Figure 21. Left: extrapolation from 1993 up to 2010 of the speed of the fastest computer in the world, taken from the Top500 list of supercomputers
(Meuer et al. 2001). The curve shows that we might reach a computer capable of 1 Petaflop = 1 million Gigaflops = 1015 flops around the year 2010. Note
that performance has increased by a factor of 100 between 1993 and 2000, and there is reason to believe that it will increase by another factor of 100 over the
next decade. Right: projected evolution up to 2012 of the number of logic transistors per microprocessor chip (in millions) and typical microprocessor clock
frequency (in MHz). This curve confirms that the number of transistors per processor is going to increase dramatically, which will also play in favour of the
possibility of reaching 1 Petaflop computers around the year 2010. Note that, contrary to popular belief, processor clock frequency is not expected to increase
far beyond the values currently available (�2 GHz). Adapted from Sterling (2000), courtesy Thomas Sterling, CACR, Caltech.

see that microprocessor clock frequency, which is closely related
to processor speed, is not expected to increase by a factor of more
than 2 or 3, because of technological barriers such as the silicon
etching resolution and thermal dissipation. However, the density of
integration of logic transistors per microprocessor chip is expected
to increase dramatically over the next ten years, another factor that
will play in favour of reaching 1 Petaflop computers around 2010
(Sterling & Messina 1995; Sterling 2000).

Considering these technological developments, we are convinced
that in the near future the SEM will be routinely used for calcula-
tions that take into account the full 3-D complexity of the Earth. For
example, one can already imagine centroid-moment tensor (CMT)
inversions in fully 3-D Earth models, since the number of unknowns
in the inversion is only of order ten. These fully 3-D CMT inver-
sions should reduce the earthquake magnitude threshold in global
catalogues considerably, and result in better constraints on loca-
tion, half-duration and mechanism. In the more distant future, we
believe that the SEM will open the door to full-waveform inver-
sions. This will require ∼10 000 forward simulations for hundreds
of earthquakes. On Petaflop parallel machines this will become
feasible.
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(Numerical modeling of the propagation of seismic waves in spherical ge-
ometry: applications to global seismology), PhD thesis, Université Paris
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