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We present a review of wave propagation at the surface of anisotropic media (crystal symmetries). The
physics for media of cubic and hexagonal symmetries has been extensively studied based on analytical
and semi-analytical methods. However, some controversies regarding surfaces waves and the use of dif-
ferent notations for the same modes require a review of the research done and a clarification of the ter-
minology. In a companion paper we obtain the full-wave solution for the wave propagation at the surface
of media with arbitrary symmetry (including cubic and hexagonal symmetries) using two spectral
numerical modeling algorithms.
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1. Introduction

The problem of surface wave (also called surface acoustic wave –
SAW) propagation in anisotropic media has been studied for
All rights reserved.
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many decades. It is of interest in acoustics of materials, e.g., non-
destructive testing of materials, where the anisotropic elastic prop-
erties of thin coatings or media containing subsurface cracks may
be evaluated from measurements of the characteristics of laser-
generated SAW [1–6], in exploration geophysics [7–9], and in seis-
mology [10–13].

A homogeneous isotropic elastic half-space can accommodate
three types of bulk waves: the P, SV and SH waves, whose polari-
zation vector is either parallel (for the P-wave) or perpendicular
(for the two S-waves) to the slowness vector. The polarization of
the S-waves with respect to the free surface of the half-space is
either vertical (for the SV-wave) or horizontal (for the SH wave).
Only the P-wave and the SV-wave may be coupled at the flat free
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surface of homogeneous isotropic elastic solids. A Rayleigh-type
SAW resulting from the linear combination of the inhomogeneous
P- and S-waves then travels along the free boundary of an isotropic
half-space. It propagates without dispersion with a constant veloc-
ity close to the S-wave velocity of the medium [14,15]. The energy
carried by this SAW, whose polarization is elliptical in the sagittal
plane, is concentrated in a one-wavelength-thick waveguide just
below the free surface [16]. A point source radiates, in addition
to the P, S and Rayleigh wavefronts, an S head wave that connects
the P and S-waves [17,18].

In the presence of anisotropy, wave propagation presents sub-
stantial differences compared to the isotropic case. The polariza-
tion vector of the three bulk waves is not necessarily parallel nor
normal to the slowness vector. Except for specific propagation
directions, the ‘‘quasi’’ P- and the two ‘‘quasi’’ S-waves may be cou-
pled at the boundary of the elastic half-space and, contrary to the
isotropic case, the SAW in anisotropic media may then result from
the linear combination of three or two inhomogeneous bulk waves,
or even from only one inhomogeneous bulk wave. The anisotropic
behavior of the medium therefore considerably modifies the exis-
tence and the structure of the SAW that propagates at the free sur-
face of the medium. The most striking change is that an anisotropic
half-space, contrary to the isotropic case, can accommodate vari-
ous supersonic SAWs (i.e., SAWs with at least one homogeneous
bulk wave component), as will be shown below. Moreover, the
properties of the SAW are mainly constrained by the orientation
of the free surface and by the direction of propagation.

Anisotropy therefore induces considerable difficulties in analyt-
ically and explicitly studying wave propagation. Attempts to derive
explicit secular equations have been reported in [19–27], but most
of the methods used are only applicable to specific anisotropic
media with a high level of symmetry and may have spurious roots
that must be carefully analyzed and suppressed. Few problems in
elastodynamics have a closed-form analytical solution and some
can be investigated with semi-analytical methods, but often one
cannot be sure if these methods give reliable solutions. Being able
to accurately simulate wave propagation numerically is therefore
essential in a wide range of fields, including ultrasonics, earth-
quake seismology and seismic prospecting where the systems gen-
erally possess anisotropic properties, described, in their most
general form, by 21 elastic coefficients and by the mass density
of the material.

In the following sections we review many aspects of harmonic
and transient wave propagation in anisotropic media. In a compan-
ion paper [28] we use two full-wave numerical methods to solve
the problem without any approximation regarding the type of
symmetry nor the orientation of the free surface.
2. Harmonic fields

A survey of the extensive literature shows that most theoretical
and experimental studies on SAW propagation in anisotropic solids
have been conducted in the frequency domain, which allows a dee-
per understanding of the physical phenomena involved. Unfortu-
nately the various surface waves are often given different names
in different articles for the same kind of waves. In Appendix A
we therefore review the different surface waves that can be pres-
ent in anisotropic media, and the results obtained in previous
works.

To our knowledge, SAWs in an anisotropic half-space were first
studied by Sveklo [29], Stoneley [30], Gold [31], Deresiewicz and
Mindlin [32], and Synge [33], followed by Gazis et al. [34],
Buchwald [35] and Buchwald and Davies [36]. After deriving a
complex secular equation and solving it by discarding some valid
solutions, such as those associated with the generalized Rayleigh
wave for instance (see more comments in Burridge [37] and Mus-
grave [38]), most of the authors concluded incorrectly that SAWs
could travel either only in discrete directions, or in some well-
defined regions, along symmetry planes of certain cubic materials.
Later, Lim and Farnell [39] made extensive numerical computa-
tions and could not find the previously reported range of ‘‘forbid-
den’’ directions of SAW propagation along symmetry as well as
non-symmetry planes of various crystals. This result was also con-
firmed by the thorough mathematical analysis of the complex sec-
ular equation presented in Burridge [37]. Moreover, Lim and
Farnell [39,40] studied numerically the range of existence and
the behavior of the various waves that can propagate at the free
surface of cubic crystals. By analyzing the roots of the secular equa-
tion in the complex plane, they deduced the velocity, attenuation,
displacement, and energy flow of the large variety of ‘‘surface
waves’’ for any direction of propagation at the (001), (110), and
(111) planes of cubic media. The review of Farnell [41] is an excel-
lent concise survey of harmonic propagation of SAWs at the free
surface of cubic media.

These results obtained based on computer studies have been
strengthened by theoretical foundations making use of the so-
called ‘‘sextic’’ formalism. This approach, now known as the Stroh
formalism, stems from the analogy between elastic fields created
by uniformly moving line dislocations and surface-wave propaga-
tion, initially recognized by Stroh [42], and subsequently extended
by many researchers, including Barnett, Lothe and their collabora-
tors [43–45]. By expressing the equation of motion and the
stress–strain law as a linear system of six first-order ordinary differ-
ential equations with respect to the six-dimensional polarization–
traction vector, the sextic state-vector formalism reformulates the
SAW problem into a standard eigenvalue problem [46,47]. The six
eigenvectors represent six inhomogeneous waves. The three eigen-
vectors that are associated with physical solutions are directly re-
lated to the waves whose linear combination results in SAW
solutions (see Barnett [48] for a concise description of the Stroh
formalism for steady waves). Under the framework of the Stroh
formalism, the criteria for the existence of the different kinds of
waves that can propagate at the free surface of an anisotropic elas-
tic half-space have been thoroughly discussed in many articles, and
general theorems have been established.

Limiting bulk waves (LBW) are waves propagating along the sur-
face of an anisotropic half-space with threshold velocities, namely
the so-called limiting velocities. These waves exist for any crystal-
lographic orientation, and their velocity can easily be determined
geometrically from the analysis of the cross-section of the slow-
ness surfaces of the three bulk waves at the sagittal plane. The suc-
cessive limiting velocities are given by the tangential contact
between the slowness branches and the normal to the free surface.
The limiting velocities are therefore the lowest velocities for bulk
wave propagation and the LBWs carry energy along the surface
[49]. In an isotropic medium the velocity of the slowest LBW is just
the S-wave velocity. The velocity Vlim of the slowest LBW plays a
key role in the general theory of SAW propagation in anisotropic
media, as it constitutes the transition between the subsonic region,
where wave velocities V are smaller than Vlim and the eigenvalues
of the SAW problem are three pairs of complex conjugates, and the
supersonic region where wave velocities V are higher than Vlim. At
the limit Vlim, called the first transonic state [48], one of the conju-
gate pairs coalesces into one degenerate eigenvalue that in the
supersonic region splits into a pair of different real eigenvalues.

The exceptional limiting bulk waves (EBW), also improperly
called the exceptional bulk waves (see Appendix A), also play a cen-
tral role, as will be shown below. Such waves are in fact particular
LBWs whose polarization vector always lies in the plane that
bounds the anisotropic medium, and which satisfy the boundary
conditions at the surface of the anisotropic half-space. In that



N. Favretto-Cristini et al. / Ultrasonics 51 (2011) 653–660 655
sense, they are similar to the so-called surface skimming bulk wave
in isotropic half-spaces [48,50,51], the SH wave being a particular
example of such a surface skimming bulk wave, and then a partic-
ular case of EBW. Nevertheless, contrary to the isotropic case,
EBWs can be either quasi-S-waves or quasi-P-waves, and they
are truly ‘‘exceptional’’ in the sense that they occur only for iso-
lated directions of propagation on certain orientations of the crys-
tal surface. For very simple cases such as high symmetry
configurations (e.g., the [100] or [110] directions on the (001)
surface of a cubic crystal), they are just an SH type.

In anisotropic media there is a large variety of SAWs that can be
either subsonic or supersonic, contrary to the isotropic case. Two
types of classifications have been proposed. The first is based on
the degeneracies in the Stroh formalism [52–55], while the second
is formulated in terms of the number of inhomogeneous (and
homogeneous) bulk waves involved in the construction of the
SAW solution. In the more general case when the free surface is
not a symmetry plane of the anisotropic material, the SAW consists
of a linear combination of three inhomogeneous waves. Yet, fol-
lowing the behavior of the roots of the characteristic equation
and the value of the coefficients of the linear combination, the
SAW can be composed of three, two, or even simply one inhomo-
geneous wave, contrary to the isotropic case. The SAWs are thus
classified into three types: three-component, two-component,
and one-component SAW. For instance, for some specific directions
of propagation, such as symmetry planes, one bulk wave is not
coupled with the two others, and only two of the three bulk waves
are therefore involved in the construction of the SAW. As an exam-
ple, one can mention the subsonic two-component SAW, which
cannot be polarized parallel to the free boundary plane in stable
anisotropic linear elastic half-spaces [56]. It has been proven that
there exists at most one such ‘‘pure’’ SAW solution in the subsonic
domain for a given geometry of propagation. As for the isotropic
case, the pure SAW results from a linear combination of only two
inhomogeneous bulk waves whose amplitude decays exponen-
tially and monotonically away from the surface. This subsonic
two-component Rayleigh wave (RW) exists, provided an EBW does
not exist, otherwise a subsonic two-component generalized RW
(see Appendix A), whose amplitude decays exponentially but with
oscillations away from the surface, may or may not arise
[45,46,57,58].

A SAW undamped in the direction of propagation is intrinsi-
cally a subsonic phenomenon. Nevertheless, contrary to the isotro-
pic case, pure undamped two-component SAWs can propagate
with supersonic velocity for some specific directions of propaga-
tion on the free surface of materials of various degrees of symme-
try. The symmetrical supersonic surface waves (symmetrical SSW)
(see Appendix A) are the first kind of two-component waves that
can exist in the supersonic region. They can occur in so-called a-
configurations [59–62], in which the so-called reference plane R,
spanned by the normal n̂ to the surface and the propagation direc-
tion m̂, coincides with a plane of material symmetry [63]. For in-
stance for cubic materials the symmetrical SSW can only exist on
the (001) and (110) planes [64]. For high-symmetry directions,
such as the [110] direction on the (001) plane of a cubic crystal,
such a wave is simply a supersonic SAW of generalized-Rayleigh
type. A pure undamped (two-component) generalized Rayleigh
wave may propagate with supersonic velocity for isolated cases
usually corresponding to high-symmetry directions of propagation
in which an EBW exists [41]. This wave, which can be considered
as secluded from the subsonic branch of the SAW, is in fact a start-
ing point for the branch of a leaky SAW [65–67].

For off-symmetry directions, the elastodynamics equations of
motion having both inhomogeneous and homogeneous wave solu-
tions, the (three-component) leaky SAW radiates its energy to-
wards the bulk of the anisotropic medium (see Appendix A), as
the leaky Rayleigh waves do at specific liquid–solid interfaces
[68]. The velocity of the leaky SAW and the magnitude of its atten-
uation along the direction of propagation strongly depend on the
perturbation of the orientation from the symmetry direction [69],
but for many cases the radiation of energy is small enough that
the leaky SAWs are easily observable in experimental conditions
[70,71]. As the orientation of the direction of propagation ap-
proaches high-symmetry directions, the contribution of the bulk
homogeneous wave in the construction of the SAW may however
vanish, together with the damping of the leaky SAW in the direc-
tion of propagation, and the (three-component) leaky SAW turns
into a generalized RW. The leaky SAW can originate either from
a (two-component) generalized RW (as is the case for the (001)
plane of copper [41]), or from an EBW [72] by a resonance phe-
nomenon [73,74] (as is the case for the (111) plane of copper
[41]). Note that solutions of leaky-SAW type occur neither in iso-
tropic media, nor in weakly anisotropic media (see Farnell [41],
p. 164). Along the leaky SAW branch there may exist other isolated
points where the contribution of the bulk homogeneous wave in
the construction of the SAW may vanish, together with the
damping of the leaky SAW [75,76], leaving a pure undamped
two-component (non-symmetrical) supersonic SAW. This wave
can be considered as secluded from the branch of the subsonic
SAW, and it is then called the secluded supersonic surface wave
(secluded SSW [77–79]) (see Appendix A).

The existence and the properties of SAW in anisotropic media
are mainly constrained by the orientation of the free surface and
by the direction of propagation. This fact is well illustrated by
the secluded (non symmetrical) SSW. Indeed, this wave cannot
propagate in the a-configuration [63,67,76]. Nevertheless, this kind
of wave may propagate when the free boundary of the anisotropic
half-space is a symmetry plane (the so-called b-configuration [63]),
or when the plane perpendicular to the reference plane and to the
direction of wave propagation is a symmetry plane (the so-called
c-configuration [63,67,76]). The secluded SSW generally exists for
a direction for which there is also a subsonic RW [77]. This is pre-
cisely the case, for instance, for the (001) plane of cubic crystals
[67]. Its occurrence has been investigated in a more general case
by Maznev and Every [79] for a germanium crystal. It has been
found to exist for a one-dimensional subspace, within the three-
dimensional space of SAW geometries (i.e. surface orientations
and propagation directions).

Contrary to the subsonic domain, a one-component SAW (see
Appendix A), consisting of one inhomogeneous wave that satisfies
the boundary condition at the surface of the anisotropic half-space,
can exist in the supersonic region in an arbitrarily anisotropic crys-
tal under certain conditions depending on the value of the elastic
coefficients of the medium [60,80]. General existence theorems
for such waves that do not exist in isotropic materials have also
been established for anisotropic media with symmetry in many
studies. No one-component SAW generally exists in a-, b-, or c-
configurations [60,81,82], except for particular triclinic materials
[80] and for some orthorhombic and some transversely-isotropic
(TI) materials [83]. More specifically, a one-component SAW can-
not travel in stable TI media whose symmetry axis coincides with
the direction of propagation [81,84]. It has also been shown that no
one-component SAW can exist in stable cubic materials [81,84].

In the subsonic region, a kind of SAW arises in the neighborhood
of the directions of propagation that permit the existence of an
EBW [49] and therefore, following the condition for the existence
of RW established by Barnett and Lothe [44], in the neighborhood
of orientations for which a subsonic RW cannot propagate [85]. The
so-called quasi-bulk surface wave (QBSW) (see Appendix A) can be
viewed as a continuous transition from the RW towards the EBW,
through non-pure SAW with particle displacements not occurring
in the sagittal plane and energy flux not being collinear with the
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propagation vector. Near the symmetry directions where an EBW
can propagate, the SAW is transformed into a QBSW with a depth
of penetration that increases for decreasing angles of deviation
from the symmetry directions. The penetration of the wave into
the crystal may become so large that the term ‘‘surface wave’’
can be misleading. In fact, the QBSW results from the (very) small
contribution of two inhomogeneous waves and the predominant
contribution of one wave whose characteristics differ slightly from
those of the EBW. The properties of the QBSW, which are thus
strongly related to the associated EBW, have been studied for crys-
tals of hexagonal [85] and arbitrary [86] symmetries. In particular
the phase velocity of the QBSW is found to be slightly smaller than
the associated limiting velocity of the bulk waves.

Many authors have emphasized the close connection between
the space of simple reflection and the space of degeneracy in the
Stroh eigenvalue problem and in SAW problems [41,53,69,76,78,
83,87,88].

3. Transient propagation

Whereas harmonic wave propagation at the free surface of
anisotropic media has been widely investigated, research on tran-
sient wave propagation is rather scarce. The so-called Lamb’s prob-
lem [89] is the study of the response of an elastic half-space to an
impulsive line or point load at its surface. The fundamental solu-
tion for a homogeneous isotropic elastic material, both in the
frequency and in the time domains, is classical [89,90]. Unfortu-
nately, anisotropy introduces considerable difficulty in generaliz-
ing this solution. A convenient way of deriving the displacement
Green’s functions of anisotropic materials is to use integral trans-
form techniques, and more specifically mixed Fourier–Laplace
transforms. Several researchers have used the Cagniard-de Hoop
(CdH) method [91–93] to reduce the Fourier–Laplace transforms
to a single integral over a contour in a complex plane that must
be determined. Kraut [94] first applied this method to study the
2D Lamb’s problem for a line source of normal stress lying on the
free surface of a TI medium (a beryl crystal) normal to the axis of
symmetry. Burridge [95] extended the technique to the most gen-
eral class of anisotropic solids and to a surface of arbitrary orienta-
tion loaded by an impulsive line traction. Only numerical results
were presented for the surface displacement at the (111) plane
of cubic copper, and the RW and leaky SAW were identified. The
case of a point source, applied at the surface of TI solids with its
normal coinciding with the axis of symmetry, has been treated in
a similar way by Ryan [96]. In contrast with the 2D problem, the
3D Lamb’s problem does not admit an explicit solution for the sur-
face displacements. They are then found in terms of single finite
integrals that must be evaluated numerically. In Payton [97], 2D
and 3D problems of transient wave propagation in TI half-spaces
that admit an explicit representation of the displacement field
are studied. In particular, the epicenter motion of the surface due
to a buried point source located on the symmetry axis, and the
epicentral-axis motion caused by a normal point load suddenly ap-
plied on the surface, are explicitly evaluated based on residue cal-
culations in the complex plane. They are also shown to be related
by the Betti–Rayleigh theorem. More recently, Deschamps and his
co-authors used the CdH technique to calculate the interior and the
surface responses of a general cubic half-space to line and point
loadings [98–101]. By analyzing the CdH contours and the singular
points in the complex plane, they observed physical phenomena
such as wavefront focusing for both the RW and the EBW as well
as the diffraction caused by the cusps and the possible generation
of the leaky SAW. Numerical calculations of only the normal com-
ponent of the displacement (used in laboratory laser experiments)
have been performed for a half-space belonging to the cubic class
of symmetry. For instance, results for the (100) surface of a copper
crystal and several directions of observation are shown in Bescond
and Deschamps [100,101].

As for the anisotropic case the CdH technique requires the anal-
ysis of complicated branch-cut integrals in the complex plane, it is
considered too cumbersome to be numerically handled and there-
fore alternative methods have been proposed. One of them, first
developed by Willis [102] and then used by Wang and Achenbach
[103–106], uses Fourier and Radon transforms. It is based on a di-
rect construction of the solution to the 3D Lamb’s problem for gen-
eral anisotropic solids by a superposition of time-transient plane
waves. It allows one to obtain integral expressions defined in a fi-
nite domain that corresponds to the projection of the slowness sur-
face to the surface of the solid. Unfortunately, their calculations
have not emphasized the cuspidal structure in the Rayleigh wave-
front, as well as the existence of the leaky SAW. In a similar way,
Tewary and Fortunko [107] derived an expression for the 3D wave-
forms due to a delta-function pulse on the free surface of tetragonal
solids, convenient for numerical computations as it requires only a
1D numerical integration. Another alternative method to the CdH
technique is based on Fourier transforms of the equations of motion
and boundary conditions, with respect to the time and the spatial
coordinates parallel to the surface. The surface displacement re-
sponse of an anisotropic half-space to sudden loading at a point
on the surface is then reduced to a 1D integral for numerical evalu-
ation [108]. The method used by Every and his collaborators can
cope with Rayleigh poles and leaky SAW resonances, as shown by
the good agreement between the calculated surface displacement
responses to a point loading for several directions on the (001)-ori-
ented surface of copper crystal and measured surface waveforms
[109]. More precisely, multiple RW arrivals resulting from the fold-
ing of the SAW ray surface associated with sharp peaks in the SAW
amplitude expressing caustics in the SAW intensity, and then the
so-called ‘‘phonon focusing effect’’ [110–115], have been predicted
and observed experimentally, as well as leaky SAW resonance and
singularities in bulk wave arrival associated with the presence of
EBW. In the case of a general anisotropic half-space subjected to
an impulsive line load, Maznev and Every [116] derived results sim-
ilar to those reported by Burridge [95] by using Fourier transforms.
They illustrated the role of SAW, leaky SAW and bulk waves in the
calculated surface response for the (111)-oriented surface of sili-
con. The studies providing the dynamic displacement response of
the (001)-, (110)-, and (111)-oriented surface of copper crystal,
developed by [5,100,101,109], will be used as a reference in our
numerical study reported in a companion paper.
4. Conclusions

We provided a review of harmonic and transient elastic wave
propagation in anisotropic media with particular emphasis on sur-
face-wave propagation in crystals, minerals and metals. This re-
view clarifies the terminology used for the surface waves. In a
companion paper we propose two spectral numerical modeling
algorithms to obtain the full-wave solution for the wave propaga-
tion at the surface of media with arbitrary symmetry.
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Appendix A. Waves propagating at the free surface of an
anisotropic half-space

SAWs propagating along the free surface of an anisotropic elas-
tic half-space result from the linear combination of three bulk
waves, which are generally damped with depth. The associated
displacement field u(r,t) can be written as:

uðr; tÞ ¼
X3

n¼1

CnAn exp½ikðm � rþ pnn � r� VtÞ� ðA:aÞ

where r is the space vector and t the time variable. The coefficients
Cn of the linear combination for the three bulk waves are deter-
mined from the boundary conditions at the free surface and can
be real- or complex-valued. They characterize the wave amplitude
up to an arbitrary infinitesimal factor, while the vectors An denote
their polarization. The wavenumber k, associated with the phase
velocity V, is the projection of the wave vector k of the SAW on
the direction of propagation m at the free surface of the anisotropic
half-space. Vector n denotes the normal to the surface of the med-
ium. Parameters pn = k�n/k�m are complex-valued in the subsonic
region, while in the supersonic region at least one pn lies on the real
axis of the complex plane and is associated with a bulk wave.
Depending on the values of Cn and pn, the SAW consists of one,
two, or three-components. There is a large variety of SAWs that
can propagate at the free surface of anisotropic materials, therefore
let us review them here.

A.1. Exceptional (limiting) bulk wave (EBW)

Strictly speaking, the exceptional bulk waves (EBW) [46,117]
are bulk waves that satisfy the boundary conditions at the free sur-
face of the anisotropic medium, and whose polarization vector al-
ways lies in the plane that bounds the medium [118]. Unlike the
limiting bulk waves (LBW), these waves are in fact eigensolutions
for the SAW problem. In most articles the term EBW is however
improperly used for the particular EBW that propagates with the
limiting velocity Vlim, instead of the term ‘‘exceptional limiting
bulk waves’’, although the exceptional limiting bulk waves are in
fact a subset of the broader class of EBW. The exceptional limiting
bulk waves then combine the properties of the EBW (namely,
polarization parallel to the free surface of the medium, and bound-
ary conditions satisfied at the free surface) with those of the limit-
ing bulk waves (namely, propagation at the limiting velocity, and
energy flux parallel to the crystal surface [45]). Hereafter and in
the article, the exceptional limiting bulk waves are denoted by
EBW. Though propagating along the surface, unlike SAWs the
EBWs do not decrease in amplitude as the distance from the sur-
face increases. Their presence is a general feature of general aniso-
tropic crystals, and it is not limited to media with high symmetry
only [118–121]. The EBWs are quite similar to the so-called surface
skimming bulk waves in isotropic solids [48,50,51], SH waves
being a particular case of such surface skimming bulk waves. Nev-
ertheless, unlike these waves, EBWs are not limited to definite
kinds of bulk waves [48]: they can be quasi-P or quasi-S-waves,
provided that their polarization vector lies in the plane that bounds
the medium. While quasi-S EBWs exist in all crystals, only few
anisotropic media permit the propagation of quasi-P EBWs [51].
Moreover, EBWs satisfy the boundary conditions at the surface of
the anisotropic half-space only for specific directions.

EBWs are also termed ‘‘improper SAWs’’, ‘‘bulk surface waves’’
[45], or even ‘‘surface skimming bulk waves’’ [48,50,109,122].
The term ‘‘lateral waves’’ is also used [4] and should be understood
as ‘‘grazing rays’’. The EBW should not be mistaken for head waves.

Composite EBWs [57] that are a superposition of two or three
EBWs can exist for certain types of transonic states, according to
the classification established by Chadwick and Smith [46] (see
Barnett [48] for a detailed discussion). Nevertheless, the EBW of
the first kind described in Chadwick and Smith [46] and that is
not composite is in fact the usual EBW defined in SAW theory.

A.2. Rayleigh wave (RW)

For an arbitrary free boundary surface and an arbitrary direction
of propagation, the Rayleigh wave consists of a linear combination
of three phase-matched evanescent waves whose amplitude de-
cays exponentially and monotonically away from the surface. The
RW is thus intrinsically a subsonic phenomenon. It then propa-
gates undamped at the free surface of an elastic half-space with
a subsonic velocity VR that is slightly smaller than the limiting
velocity Vlim. The motion of the RW describes an ellipse that is gen-
erally tilted with respect to the sagittal plane. However, for sym-
metry directions, only two of the three waves are involved in the
RW construction and the corresponding motion describing an
ellipse occurs in the sagittal plane, as in the isotropic case. The
energy carried by the RW is generally concentrated in a roughly
one-wavelength-thick waveguide below the free surface for high-
symmetry directions, but it can penetrate deeper in the bulk of
the anisotropic medium for out-of-symmetry directions. The RW
never coexists with an EBW propagating in the same direction, as
in the isotropic case.

Because its properties are similar to those of a RW propagating
at the free surface of an isotropic elastic medium, the RW is also
called an ‘‘ordinary RW’’ [123], a ‘‘pure SAW’’ or ‘‘pure RW’’, or a
‘‘proper SAW’’ [44].

A.3. Generalized rayleigh wave (generalized RW)

The generalized Rayleigh wave is a kind of Rayleigh wave that
can propagate with either a subsonic or supersonic velocity. It does
not exist in isotropic media. Unlike the RW, it consists of two-
components whose amplitude is non-monotonically damped to-
wards the bulk of the anisotropic medium, but with an oscillatory
trend [123,124]. The period of the oscillations of the amplitude as
well as the penetration distance in the bulk of the medium and the
velocity of the generalized RW depend on the so-called anisotropy
parameter of the material. For instance, for the (001) plane of a cu-
bic medium this parameter is characterized either by [125]
A = 2c44/(c11 � c12), or by [123] g = 1/A, where c11, c44, and c12 are
the three independent elastic coefficients of the anisotropic med-
ium. It has been shown that the period of the oscillations decreases
with increasing values of the anisotropy parameter [125] A, or
decreasing values of parameter [123] g. Moreover, the velocity of
the generalized RW decreases with decreasing values of parameter
g. Approximate expressions for the phase velocity and the oscilla-
tion damping have been established for cubic media with g < 1/4 in
Royer and Dieulesaint [125]. Usually, the generalized RW propa-
gates undamped in the direction of propagation with a subsonic
velocity and its polarization is elliptical in the sagittal plane.
Nevertheless, the generalized RW can also be a two-component
supersonic wave for isolated cases corresponding usually to high-
symmetry directions of propagation [41]. In this case, it generally
belongs to the branch of a leaky SAW [65,76]. Contrary to the
RW, the generalized RW may coexist with an EBW propagating
in the same direction.

The RW and the generalized RW cannot coexist. For instance,
for cubic materials and depending on the anisotropy parameter
g, the RW that propagates along symmetry directions on high-
symmetry boundary surfaces can be either ordinary or generalized.
Kosevich et al. [123,124,126] have analyzed the conditions under
which the transition from an ordinary RW to a generalized RW
takes place in cubic crystals for various values of the anisotropy
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parameter g. Their work strengthens the numerical study of Gazis
et al. [34]. The transition occurs at a particular value (g = g0 ’ 1)
for which there is degeneracy of the roots of the characteristic
equation for the bulk vibrations. The region g < g0 corresponds to
the existence of the generalized RW, while the region g > g0 corre-
sponds to the existence of the ordinary RW. It has been shown
[124] that the non-convexity of the cross-section of the slowness
surface of the bulk shear wave, polarized in the sagittal plane, is
a sufficient but not a necessary condition for the existence of a gen-
eralized RW. In highly anisotropic crystals (i.e., for instance with
g� 1), one of the two components involved in the construction
of the generalized RW can become dominant, have an almost linear
polarization normal to the free surface, and can penetrate into the
crystals to a depth significantly greater than the wavelength. The
generalized RW can thus possess the properties of both the bulk
wave and the pure RW, whose penetration depth is about the
wavelength. Such a wave is called the deeply penetrating RW
(DPRW) and has been thoroughly investigated by Kosevich et al.
[126] in the case of wave propagation along the [100] direction
on the (001) plane of a cubic crystal. However, the DPRW can
propagate in crystals characterized by a strong anisotropy of the
velocity of bulk shear waves polarized in other sagittal planes as
well [124].

The generalized RW is also sometimes called ‘‘Rayleigh wave’’
by Lothe and his collaborators, which may be confusing.

A.4. Quasi-bulk surface wave (QBSW)

The quasi-bulk (surface) wave arises in the neighborhood of the
direction of propagation at which an EBW exists. The criterion for
the existence (respectively, absence) of the QBSW in the neighbor-
hood of symmetry orientations is then the absence (respectively,
existence) of subsonic RWs propagating in the symmetry direction
[85]. At small deviation from this symmetry direction, the bulk
wave associated with the EBW is dominant in the construction of
a three-component SAW and the three partial wave combination
as a whole is referred to as a QBSW. In fact, the QBSW can be
considered as a gradual change of the SAW into the EBW. Its polar-
ization vector tilts towards the free surface of the anisotropic half-
space. Furthermore, the smaller the angle of deviation from the
symmetry orientation, the less damped the wave is into the
medium, i.e., the wave penetrates deeper.

This is the reason why the QBSW is also called ‘‘quasi-bulk
Rayleigh wave’’ [86], or ‘‘deeply penetrating Rayleigh wave’’ [5],
which may lead to confusions with the terminology used by Kose-
vich and his collaborators to describe the behavior of RW in crys-
tals with strong anisotropy [126].

A.5. Leaky surface acoustic wave (leaky SAW)

The leaky wave is a solution to the boundary-value problem in
the form of a linear combination of two inhomogeneous waves and
one bulk wave that radiates energy into the anisotropic medium.
The leaky SAW is inherently a supersonic phenomenon, and its
velocity lies between the first and second limiting velocities. This
wave propagates damped in the direction of propagation. Never-
theless, as for many cases the radiation of energy is small enough,
the leaky SAW can easily be observable in experimental conditions
[70,71]. Its properties are quite similar to those of a leaky SAW
propagating at the interface between an ideal fluid and an isotropic
elastic medium [68,127]. Note that this kind of wave does not exist
in an isotropic half-space. Approximate expressions for its velocity
and the magnitude of its attenuation along the direction of propa-
gation are given without any assumption on the symmetry of the
crystal in [69]. The leaky SAW can be caused by a generalized
RW or by an EBW [69,72,75].
The leaky SAW is also called ‘‘pseudo SAW’’ [85], or ‘‘supersonic
wave’’.
A.6. Secluded supersonic surface wave (secluded SSW)

The secluded supersonic surface wave exists at the so-called
pure points where the damping of the leaky wave in the direction
of propagation vanishes together with the coefficient of the linear
combination associated with the bulk wave. This results in a two-
component (non-symmetrical) supersonic surface wave that
generally exists for a specific direction along which a subsonic
Rayleigh wave can also propagate [77–79]. It can be seen as due
to confluence between the space of simple reflection and the leaky
SAW branch [67,76,83,128].

The secluded SSW is also called ‘‘non-symmetrical supersonic
wave’’ [79].
A.7. One-component surface acoustic wave (one-component SAW)

Mathematically, it is represented by degeneracy in the Stroh
eigenvalue problem [60]. The one-component surface wave
consists of only one inhomogeneous wave and is necessarily super-
sonic. There are three versions of the one-component SAW [83].
Two are polarized in the plane of the boundary of the anisotropic
half-space [60,80]. The third is a supersonic generalized one-
component surface wave similar to the generalized Rayleigh wave
studied in Kosevich et al. [123]. No one-component SAW exists for
either isotropic elastic materials, or crystals of cubic symmetry
[81,84]. This kind of wave can occur under certain conditions for
particular triclinic media [80] as well as for some particular TI
media [81,83,84]. The one-component SAW can be seen as due to
confluence between the space of degeneracy and a two-component
secluded SSW [83].
A.8. Symmetrical surface waves (symmetrical SAW)

Symmetrical surface waves are necessarily two-component
SAWs that can occur in both the subsonic and the supersonic re-
gions when the sagittal plane in which they are polarized is a plane
of symmetry of the material [59,60,66]. They form a continuous
branch extending from the subsonic region into the supersonic re-
gion and occurring in materials of monoclinic, orthorhombic and
cubic symmetry [61,62]. For high-symmetry directions on symme-
try planes, such waves are typically of RW or generalized-RW type.
References

[1] B. Castagnéde, Y. Berthelot, Photoacoustic interactions by modulation and
laser impact: applications in mechanics and physics of anisotropic solids,
Journal d’Acoustique 5 (1992) 417–453.

[2] J.F. Chai, T.T. Wu, Determination of anisotropic elastic constants using laser-
generated surface waves, Journal of the Acoustical Society of America 95
(1994) 3232–3241.

[3] D.C. Hurley, V.K. Tewary, A.J. Richards, Surface acoustic wave methods to
determine the anisotropic elastic properties of thin films, Measurement
Science Technology 12 (2001) 1486–1494.

[4] A.G. Every, Measurement of the near-surface elastic properties of solids and
thin supported films, Measurement Science Technology 13 (2002) R21–R39.

[5] A.G. Every, M. Deschamps, Principal surface wave velocities in the point focus
acoustic materials signature V(z) of an anisotropic solid, Ultrasonics 41 (2003)
581–591.

[6] K. van Wijk, D. Komatitsch, J.A. Scales, J. Tromp, Analysis of strong scattering
at the micro-scale, Journal of the Acoustical Society of America 115 (3) (2004)
1006–1011, doi:10.1121/1.1647480.

[7] J.M. Carcione, Domain decomposition for wave propagation problems, Journal
of Scientific Computing 6 (4) (1991) 453–472.

[8] S. Hestholm, B. Ruud, 2D finite-difference elastic wave modelling including
surface topography, Geophysical Prospecting 42 (1994) 371–390.

[9] E. Tessmer, D. Kosloff, 3-D elastic modeling with surface topography by a
Chebyshev spectral method, Geophysics 59 (3) (1994) 464–473.

http://dx.doi.org/10.1121/1.1647480


N. Favretto-Cristini et al. / Ultrasonics 51 (2011) 653–660 659
[10] M.D. Trifunac, Surface motion of a semi-cylindrical alluvial valley for incident
plane SH waves, Bulletin of the Seismological Society of America 61 (1971)
1755–1770.

[11] M. Bouchon, Effect of topography on surface motion, Bulletin of the
Seismological Society of America 63 (1973) 615–632.

[12] S. Crampin, D.B. Taylor, The propagation of surface waves in anisotropic
media, Geophysical Journal International 25 (1–3) (1977) 71–87.

[13] S.J. Lee, H.W. Chen, Q. Liu, D. Komatitsch, B.S. Huang, J. Tromp, Three-
dimensional simulations of seismic wave propagation in the Taipei basin
with realistic topography based upon the spectral-element method, Bulletin
of the Seismological Society of America 98 (1) (2008) 253–264, doi:10.1785/
0120070033.

[14] L. Knopoff, On Rayleigh wave velocities, Bulletin of the Seismological Society
of America 42 (1952) 307–308.

[15] L. Landau, E. Lifchitz, Théorie de l’élasticité (Theory of Elasticity), second ed.,
Mir, Moscow, Russia, 1953.

[16] I.A. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications,
Plenum Press, New-York, USA, 1967.

[17] W.L. Pilant, Elastic Waves in the Earth, Developments in Solid Earth
Geophysics Series, vol. 11, Elsevier Scientific Publishing Company,
Amsterdam, The Netherlands, 1979.

[18] J.M. Carcione, Modeling anelastic singular surface waves in the earth,
Geophysics 57 (6) (1992) 781–792.

[19] P.K. Currie, The secular equation for Rayleigh waves on elastic crystals,
Quarterly Journal of Mechanics and Applied Mathematics 32 (1979) 163–173.

[20] D.B. Taylor, P.K. Currie, The secular equation for Rayleigh waves on elastic
crystals. II Corrections and additions, Quarterly Journal of Mechanics and
Applied Mathematics 34 (1981) 231–234.

[21] M. Destrade, The explicit secular equation for surface acoustic waves in
monoclinic elastic crystals, Journal of the Acoustical Society of America 109
(4) (2001) 1398–1402.

[22] M. Destrade, Surface waves in orthotropic incompressible materials, Journal
of the Acoustical Society of America 110 (2) (2001) 837–840.

[23] M. Destrade, Rayleigh waves in symmetry planes of crystals: explicit secular
equations and some explicit wave speeds, Mechanics of Materials 35 (2003)
931–939.

[24] T. Ting, Explicit secular equations for surface waves in monoclinic materials
with the symmetry plane x1 = 0, x2 = 0 or x3 = 0, Proceedings of the Royal
Entomological Society of London Series A – General Entomology 458 (2002)
1017–1031.

[25] T.C.T. Ting, Explicit secular equations for surface waves in an anisotropic
elastic half-space from Rayleigh to today, in: R. Goldstein, G. Maugin (Eds.),
Surface Waves in Anisotropic and Laminated Bodies and Defects Detection,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004, pp. 95–116.

[26] T.C.T. Ting, The polarization vector and secular equation for surface waves in
anisotropic elastic half-space, International Journal of Solids and Structures
41 (2004) 2065–2083.

[27] A. Mielke, Y.B. Fu, Uniqueness of the surface-wave speed: a proof that is
independent of the Stroh formalism, Mathematics and Mechanics of Solids 9
(2004) 5–15.

[28] D. Komatitsch, J.M. Carcione, F. Cavallini, N. Favretto-Cristini, Elastic surface
waves in crystals – Part 2: Cross-check of two full-wave numerical modeling
methods, Ultrasonics, submitted for publication.

[29] V.A. Sveklo, Plane waves and Rayleigh waves in anisotropic media, Doklady
Akademii Nauk SSSR 59 (1948) 871–874.

[30] R. Stoneley, The propagation of surface elastic waves in a cubic crystal,
Proceedings of the Royal Society of London, United Kingdom A232 (1955)
447–458.

[31] L. Gold, Rayleigh wave propagation on anisotropic (cubic) media, Physical
Review 104 (6) (1956) 1532–1536.

[32] H. Deresiewicz, R.D. Mindlin, Waves on the surface of a crystal, Journal of
Applied Physics 28 (6) (1957) 669–671.

[33] J.L. Synge, Elastic waves in anisotropic media, Journal of Mathematical
Physics 35 (1957) 323–335.

[34] D.C. Gazis, R. Herman, R.F. Wallis, Surface elastic waves in cubic crystals,
Physical Review 119 (2) (1960) 533–544.

[35] V.T. Buchwald, Rayleigh waves in anisotropic media, Quarterly Journal of
Mechanics and Applied Mathematics 14 (4) (1961) 461–468.

[36] V.T. Buchwald, A. Davis, Surface waves in elastic media with cubic
symmetry, Quarterly Journal of Mechanics and Applied Mathematics 16
(1963) 283–293.

[37] R. Burridge, The directions in which Rayleigh waves may be propagated on
crystals, Quarterly Journal of Mechanics and Applied Mathematics 23 (2)
(1970) 217–224.

[38] M. Musgrave, Crystal Acoustics – Introduction to the Study of Elastic Waves
and Vibrations in Crystals, Holden-Day, San Francisco, USA, 1970.

[39] T.C. Lim, G.W. Farnell, Search for forbidden directions of elastic surface wave
propagation in anisotropic crystals, Journal of Applied Physics 39 (9) (1968)
4319–4325.

[40] T.C. Lim, G.W. Farnell, Character of pseudo-surface waves on anisotropic
crystals, Journal of the Acoustical Society of America 45 (4) (1969) 845–851.

[41] G.W. Farnell, Properties of elastic surface waves, in: W.P. Mason, R.N.
Thurston (Eds.), Physical Acoustics, vol. 6, Academic Press, New-York, USA,
1970, pp. 109–166 (Chapter 3).

[42] A.N. Stroh, Steady-state problems in anisotropic elasticity, Journal of
Mathematical Physics 41 (1962) 77–103.
[43] D.M. Barnett, J. Lothe, K. Nishioka, R.J. Asaro, Elastic surface waves in
anisotropic crystals: a simplified method for calculating Rayleigh velocities
using dislocation theory, Journal of Physics F: Metal Physics 3 (1973) 1083–
1096.

[44] D.M. Barnett, J. Lothe, Consideration of the existence of surface wave
(Rayleigh wave) solutions in anisotropic elastic crystals, Journal of Physics
F: Metal Physics 4 (1974) 671–686.

[45] J. Lothe, D.M. Barnett, On the existence of surface-wave solutions for
anisotropic elastic half-spaces with free surface, Journal of Applied Physics
47 (1976) 428–433.

[46] P. Chadwick, G.D. Smith, Foundations of the theory of surface waves in
anisotropic elastic materials, in: C.S. Yih (Ed.), Advances in Applied
Mechanics, vol. 17, Academic Press, New-York, USA, 1977, pp. 303–376.

[47] T.C.T. Ting, Anisotropic Elasticity: Theory and Applications, Oxford University
Press, United Kingdom, 1996.

[48] D.M. Barnett, Bulk, surface, and interfacial waves in anisotropic linear elastic
solids, International Journal of Solids and Structures 37 (2000) 45–54.

[49] V.I. Alshits, J. Lothe, Surface waves in hexagonal crystals, Soviet Physics
Crystallography 23 (1978) 509–515.

[50] S.V. Biryukov, Y.V. Gulyaev, V.V. Krylov, V.P. Plessky, Surface Acoustic Waves
in Inhomogeneous Media, Springer Series on Wave Phenomena, vol. 20,
Springer-Verlag, Berlin, Germany, 1995.

[51] N.F. Naumenko, Application of exceptional wave theory to materials used in
surface acoustic wave devices, Journal of Applied Physics 79 (12) (1996)
8936–8943.

[52] T.C.T. Ting, D.M. Barnett, Classifications of surface waves in anisotropic elastic
materials, Wave Motion 26 (1997) 207–218.

[53] L. Wang, Space of degeneracy in the Stroh eigensystem and surface waves in
transversely isotropic elastic media, Wave Motion 40 (2004) 173–190.

[54] L. Wang, Extraordinary degeneracy and space of degeneracy in transversely
isotropic elastic media, Wave Motion 45 (2008) 264–277.

[55] J. Lothe, V. Alshits, Surface waves, limiting waves and exceptional waves:
David barnett’s role in the development of the theory, Mathematics and
Mechanics of Solids 14 (2009) 16–37.

[56] D.M. Barnett, On the non-existence of subsonic boundary-polarized two-
component free surface waves, Physica Scripta T44 (1992) 98–103.

[57] D.M. Barnett, J. Lothe, Free surface (Rayleigh) waves in anisotropic elastic
halfspaces: the surface impedance method, Proceedings of the Royal Society
of London, United Kingdom A402 (1985) 135–152.

[58] T. Ting, Explicit conditions for the existence of exceptional body waves and
subsonic waves in anisotropic elastic solids, Wave Motion 46 (2009) 323–
335.

[59] P. Chadwick, The behaviour of elastic surface waves polarized in a plane of
material symmetry. I. General analysis, Proceedings of the Royal Society of
London, United Kingdom A430 (1990) 213–240.

[60] D.M. Barnett, P. Chadwick, J. Lothe, The behaviour of elastic surface waves
polarized in a plane of material symmetry. I. Addendum, Proceedings of the
Royal Society of London, United Kingdom A433 (1991) 699–710.

[61] P. Chadwick, N.J. Wilson, The behaviour of elastic surface waves polarized in a
plane of material symmetry. II. Monoclinic media, Proceedings of the Royal
Society of London, United Kingdom A438 (1992) 207–223.

[62] P. Chadwick, N.J. Wilson, The behaviour of elastic surface waves polarized in a
plane of material symmetry. III. Orthorhombic and cubic media, Proceedings
of the Royal Society of London, United Kingdom A438 (1992) 225–247.

[63] P. Chadwick, Wave propagation in transversely isotropic elastic media. II.
Surface waves, Proceedings of the Royal Society of London, United Kingdom
A422 (1989) 67–101.

[64] D.M. Barnett, S.D. Gavazza, J. Lothe, Slip waves along the interface between
two anisotropic elastic half-spaces in sliding contact, Proceedings of the Royal
Society of London, United Kingdom A415 (1988) 389–419.

[65] K.A. Ingebrigtsen, A. Tonning, Elastic surface waves in crystals, Physical
Review 184 (3) (1969) 942–951.

[66] L. Wang, Existence of symmetric surface waves and their relation with leaky
surface waves in cubic materials, Physica Scripta T44 (1992) 128–132.

[67] L. Wang, J. Lothe, Simple reflection in anisotropic elastic media and its
relation to exceptional waves and supersonic surface waves: (II) examples,
Wave Motion 16 (1992) 101–112.

[68] J.M. Carcione, H.B. Helle, On the physics and simulation of wave propagation
at the ocean bottom, Geophysics 69 (2004) 825–839.

[69] A.N. Darinskii, On the theory of leaky waves in crystals, Wave Motion 25
(1997) 35–49.

[70] H. Engan, K.A. Ingebrigtsen, A. Tonning, Elastic surface waves in alpha-quartz:
observation of leaky surface waves, Applied Physics Letters 10 (1967) 311–
313.

[71] F.R. Rollins Jr., T.C. Lim, G.W. Farnell, Ultrasonic reflectivity and surface wave
phenomena on surfaces of copper single crystals, Applied Physics Letters 12
(7) (1968) 236–238.

[72] A.N. Darinskii, V.I. Alshits, J. Lothe, Simple reflection and leaky waves in the
vicinity of a line of exceptional bulk waves, Wave Motion 30 (1999) 253–274.

[73] A.N. Darinskii, Leaky waves and the elastic wave resonance reflection on a
crystal-thin solid layer interface. II Leaky waves given rise to by exceptional
bulk waves, Journal of the Acoustical Society of America 103 (1998) 1845–
1854.

[74] A.N. Darinskii, M. Weihnacht, Acoustic waves in bounded anisotropic media:
theorems, estimations, and computations, IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control 52 (5) (2005) 792–801.

http://dx.doi.org/10.1785/0120070033
http://dx.doi.org/10.1785/0120070033


660 N. Favretto-Cristini et al. / Ultrasonics 51 (2011) 653–660
[75] G.W. Farnell, Review of pseudo-surface waves, in: Proceedings of the Surface
Waves in Solids and Layered Structures (ISSWAS86) International
Symposium, vol. 3, Novosibirsk, Russia, 1986, pp. 7–20.

[76] L. Wang, J. Lothe, Simple reflection in anisotropic elastic media and its
relation to exceptional waves and supersonic surface waves (I) general
theoretical considerations, Wave Motion 16 (1992) 89–99.

[77] S.A. Gundersen, L. Wang, J. Lothe, Secluded supersonic elastic surface waves,
Wave Motion 14 (1991) 129–143.

[78] J. Lothe, L. Wang, Self-orthogonal sextic formalism for anisotropic elastic
media: spaces of simple reflection and two-component surface waves, Wave
Motion 21 (1995) 163–181.

[79] A.A. Maznev, A.G. Every, Secluded supersonic surface waves in germanium,
Physics Letters A197 (1995) 423–427.

[80] D.M. Barnett, P. Chadwick, The existence of one-component surface waves
and exceptional transonic states of types 2, 4 and E1 in anisotropic elastic
media, in: J.J. Wu, T.C.T. Ting, D.M. Barnett (Eds.), Modern Theory of
Anisotropic Elasticity and Applications, SIAM, Philadelphia, USA, 1991, pp.
199–214.

[81] P. Chadwick, Some remarks on the existence of one-component surface
waves in elastic materials with symmetry, Physica Scripta T44 (1992) 94–
97.

[82] T.C.T. Ting, The motion of one-component surface waves, Journal of the
Mechanics and Physics of Solids 40 (7) (1992) 1637–1650.

[83] L. Wang, S.A. Gundersen, Existence of one-component surface waves in
anisotropic elastic media, Physica Scripta 47 (1993) 394–404.

[84] A.N. Norris, One-component surface waves in materials with symmetry,
Journal of the Mechanics and Physics of Solids 40 (7) (1992) 1569–1582.

[85] J. Lothe, V.I. Alshits, Existence criterion for quasi-bulk surface waves, Soviet
Physics Crystallography 22 (1977) 519–525.

[86] A.N. Darinskii, Quasi-bulk Rayleigh waves in semi-infinite media of arbitrary
anisotropy, Wave Motion 27 (1998) 79–93.

[87] V.I. Alshits, J. Lothe, Comments on the relation between surface wave theory
and the theory of reflection, Wave Motion 3 (1981) 297–310.

[88] V.I. Alshits, J. Lothe, Some basic properties of bulk elastic waves in anisotropic
media, Wave Motion 40 (2004) 297–313.

[89] H. Lamb, On the propagation of tremors over the surface of an elastic solid,
Philosophical Transactions of the Royal Society of London Series A –
Mathematical and Physical Sciences 203 (1904) 1–42.

[90] J.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland,
Amsterdam, The Netherlands, 1973.

[91] L. Cagniard, Réflexion et Réfraction des Ondes Sismiques Progressives,
Gauthiers-Villars, Paris, 1939.

[92] A.T. de Hoop, A modification of Cagniard’s method for solving seismic pulse
problems, Applied Science Research B8 (1960) 349–356.

[93] J.H.M.T. van der Hijden, Propagation of Transient Elastic Waves in Stratified
Anisotropic Media, North-Holland, Amsterdam, The Netherlands, 1987.

[94] E.A. Kraut, Advances in the theory of anisotropic elastic wave propagation,
Reviews of Geophysics 1 (3) (1963) 401–448.

[95] R. Burridge, Lamb’s problem for an anisotropic half-space, Quarterly Journal
of Mechanics and Applied Mathematics 24 (1) (1971) 81–98.

[96] R.L. Ryan, Pulse propagation in a transversely isotropic half-space, Journal of
Sound and Vibration 14 (4) (1971) 511–524.

[97] R.G. Payton, Elastic Wave Propagation in Transversely Isotropic Media,
Martinus Nijhoff, The Hague, The Netherlands, 1983.

[98] A. Mourad, M. Deschamps, Lamb’s problem for an anisotropic half-space
studied by the Cagniard-de Hoop method, Journal of the Acoustical Society of
America 97 (5) (1995) 3194–3197.

[99] A. Mourad, M. Deschamps, B. Castagnéde, Acoustic waves generated by a
transient line source in an anisotropic half-space, Acustica – Acta Acustica 82
(1996) 839–851.

[100] C. Bescond, M. Deschamps, Dynamical surface response of a semi-infinite
anisotropic elastic medium to an impulsive force, Journal of the Acoustical
Society of America 103 (1) (1998) 114–124.

[101] C. Bescond, M. Deschamps, Erratum to dynamical surface response of a semi-
infinite anisotropic elastic medium to an impulsive force, Journal of the
Acoustical Society of America 104 (1) (1998) 599.

[102] J.R. Willis, Self-similar problems in elastodynamics, Philosophical
Transactions of the Royal Society of London, United Kingdom Series A 274
(1973) 435–491.
[103] C.Y. Wang, J.D. Achenbach, A new method to obtain 3D Green’s functions for
anisotropic solids, Wave Motion 18 (1993) 273–289.

[104] C.Y. Wang, J.D. Achenbach, Elastodynamic fundamental solutions for
anisotropic solids, Geophysical Journal International 118 (1994) 384–392.

[105] C.Y. Wang, J.D. Achenbach, Three-dimensional time-harmonic elastodynamic
Green’s functions for anisotropic solids, Proceedings of the Royal Society of
London, United Kingdom A-449 (1995) 441–458.

[106] C.Y. Wang, J.D. Achenbach, Lamb’s problem for solids of general anisotropy,
Wave Motion 24 (1996) 227–242.

[107] V.K. Tewary, C.M. Fortunko, Surface waves in three-dimensional half-space
tetragonal solids, Journal of the Acoustical Society of America 100 (1) (1996)
86–88.

[108] A.G. Every, K.Y. Kim, A.A. Maznev, The elastodynamic response of a semi-
infinite anisotropic solid to sudden surface loading, Journal of the Acoustical
Society of America 102 (3) (1997) 1346–1354.

[109] A.G. Every, K.Y. Kim, A.A. Maznev, Surface dynamic response functions of
anisotropic solids, Ultrasonics 36 (1998) 349–353.

[110] R.E. Camley, A.A. Maradudin, Phonon focusing at surfaces, Physical Review B
27 (4) (1983) 1959–1964.

[111] A.A. Kolomenskii, A.A. Maznev, Phonon-focusing effect with laser-generated
ultrasonic surface waves, Physical Review B 48 (19) (1993) 14502–14512.

[112] A.A. Maznev, A.G. Every, Ray surface and focusing of surface acoustic waves
on the basal plane of cubic crystals, Acta Acustica 1 (1994) 137–143.

[113] A.L. Shuvalov, A.G. Every, Transverse curvature of the acoustic slowness
surface in crystal symmetry planes and associated phonon focusing cusps,
Journal of the Acoustical Society of America 108 (5) (2000) 2107–2113.

[114] A. Maznev, A.M. Lomonosov, P. Hess, A.A. Kolomenskii, Anisotropic effects in
surface acoustic wave propagation from a point source in a crystal, The
European Physical Journal B 35 (2003) 429–439.

[115] L. Wang, Caustic and anticaustic points in the phonon focusing patterns of
cubic crystals, Journal of the Acoustical Society of America 123 (6) (2008)
4140–4146.

[116] A.A. Maznev, A.G. Every, Time-domain dynamic surface response of an
anisotropic elastic solid to an impulsive line force, International Journal of
Engineering Science 35 (4) (1997) 321–327.

[117] P. Chadwick, G.D. Smith, Surface waves in cubic elastic materials, in: H.G.
Hopkins, M.J. Sewell (Eds.), Mechanics of Solids, Pergamon Press, Oxford,
United Kingdom, 1982, pp. 47–100.

[118] V.I. Alshits, J. Lothe, Elastic waves in triclinic crystals: (III) the problem of
existence and some general properties of exceptional surface waves, Soviet
Physics Crystallography 24 (1979) 644–648.

[119] V.I. Alshits, J. Lothe, Elastic waves in triclinic crystals: (I) general theory and
the degeneracy problem, Soviet Physics Crystallography 24 (1979) 387–392.

[120] V.I. Alshits, J. Lothe, Elastic waves in triclinic crystals: (II) topology of
polarization fields and some general theorems, Soviet Physics Crystallography
24 (1979) 393–398.

[121] V.I. Alshits, V.N. Lyubimov, N.F. Naumenko, N.V. Perelomova, A.L. Shuvalov,
Exceptional elastic body waves in crystals of various symmetries, Soviet
Physics Crystallography 30 (1985) 123–126.

[122] J. Lothe, L. Wang, Properties of type 6 transonic states with respect to grazing
incidence reflection of bulk waves at planar free or clamped surfaces of half-
infinite elastically anisotropic media, Wave Motion 20 (1994) 41–56.

[123] A.M. Kosevich, Y.A. Kosevich, E.S. Syrkin, Generalized Rayleigh waves and the
geometry of isofrequency surfaces of sound oscillation waves in crystals,
Soviet Physics – Journal of Experimental and Theoretical Physics 61 (1985)
639–644.

[124] Y.A. Kosevich, E.S. Syrkin, A.M. Kosevich, Vibrations localized near surfaces
and interfaces in non-traditional crystals, Progress in Surface Science 55 (1)
(1997) 59–111.

[125] D. Royer, E. Dieulesaint, Rayleigh wave velocity and displacement in
orthorhombic, tetragonal, hexagonal, and cubic crystals, Journal of the
Acoustical Society of America 76 (5) (1984) 1438–1444.

[126] Y.A. Kosevich, E.S. Syrkin, Existence criterion and properties of deeply
penetrating Rayleigh waves in crystals, Soviet Physics – Journal of
Experimental and Theoretical Physics 62 (6) (1985) 1282–1286.

[127] L.M. Brekhovskikh, O.A. Godin, Acoustics of layered media I, Springer Series
on Wave phenomena, vol. 5, Springer-Verlag, Berlin, Germany, 1990.

[128] G. Stegeman, Normal-mode surface waves in pseudo-branch on (001) plane
of gallium arsenide, Journal of Applied Physics 47 (1976) 1712–1713.


	Elastic surface waves in crystals. Part 1: Review of the physics
	Introduction
	Harmonic fields
	Transient propagation
	Conclusions
	Acknowledgements
	Waves propagating at the free surface of an anisotropic half-space
	Exceptional (limiting) bulk wave (EBW)
	Rayleigh wave (RW)
	Generalized rayleigh wave (generalized RW)
	Quasi-bulk surface wave (QBSW)
	Leaky surface acoustic wave (leaky SAW)
	Secluded supersonic surface wave (secluded SSW)
	One-component surface acoustic wave (one-component SAW)
	Symmetrical surface waves (symmetrical SAW)

	References


