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Abstract: Some numerical results in the time domain obtained with
the spectral-element method are presented in order to illustrate the high
potential of this technique for modeling the propagation of acoustic
waves in the ocean in complex configurations. A validation for a simple
configuration with a known solution is shown, followed by some simu-
lations of the propagation of acoustic waves over different types of
ocean bottoms (fluid, elastic, and porous) to emphasize the wide variety
of media that can be considered within the framework of this method.
Finally, a movie illustrating upslope propagation over a viscoelastic
wedge is presented and discussed.
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1. Introduction

The field of numerical modeling of sound propagation in the ocean has been the sub-
ject of increasing interest of the underwater acoustics community for many years.
Computing an accurate solution, taking a complex environment into account, is still
the subject of active research in ocean acoustics for which the objectives are now to
focus on simulations in the time domain for 2D configurations with the prospect of
being able to handle 3D configurations in the near future. Nowadays, with the stun-
ning increase in computational power, full wave numerical simulation of complex
wave propagation problems in the time domain is becoming possible. Several numeri-
cal techniques can be used to accurately solve the full wave equation in complex con-
figurations, for instance, the finite-difference method, boundary-element methods, spec-
tral or pseudospectral methods, classical low-order finite-element methods, spectral-
element method or discontinuous Galerkin methods. A review of the different numeri-
cal techniques commonly used in underwater acoustics can be found in Jensen et al.1

Another technique, the spectral-element method (SEM), which is based upon a high-
order piecewise polynomial approximation of the weak formulation of the wave equa-
tion, has been the subject of many developments in geophysics in the last 15 yr from
the numerical, physical and computational points of view. It was originally developed
for Navier Stokes equations2 and later adapted to both forward and adjoint/inverse
seismological applications3,4 and thoroughly validated in that context. It is therefore a
good candidate for performing numerical simulations in ocean acoustics in which simi-
lar types of media are considered.

The purpose of this letter is to present some illustrative examples that empha-
size the high potential of the SEM for underwater acoustic applications. For the sake
of simplicity, only two-dimensional configurations will be considered, but a three-
dimensional version of the finite spectral-element method already exists and is routinely
used, for instance, in geophysics. 2D and 3D versions of an implementation of the
SEM, respectively, named SPECFEM2D and SPECFEM3D, are available for free on the
Computational Initiative in Geophysics (CIG) website.

In Sec. 2, we will briefly give an introduction to the main characteristics of the
SEM and in Sec. 3 we will illustrate its application to ocean acoustics with some
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examples including a movie that shows wave propagation following an explosion over
a viscoelastic wedge.

2. Short description of the spectral finite element method

Let us briefly recall the main characteristics of the SEM. As pointed out in the Intro-
duction, the spectral-element method is based upon a high-order piecewise polynomial
approximation of the weak formulation of the wave equation. It combines the accu-
racy of the pseudospectral method with the flexibility of the finite-element method. In
this method, the wavefield is represented in terms of high-degree Lagrange interpo-
lants, and integrals are computed based upon Gauss–Lobatto–Legendre quadrature.
This combination leads to perfectly diagonal mass matrix, which in turns leads to a
fully explicit time scheme that lends itself very well to numerical simulations on paral-
lel computers.

It is particularly well suited to handling complex geometries and interface con-
ditions. As a consequence, the accurate simulation of surface wave propagation is
straightforward without any additional cost. The use of a pseudospectral method also
leads to the generation of coarser meshes. The typical element size that is required to
generate an accurate mesh is of the order of k, k being the smallest wavelength of
waves traveling in the model. This comes from the fact that each spectral element,
when using the SEM with a polynomial degree of N¼ 4, which is a typical value, con-
tains a subgrid of (Nþ 1)2¼ 5� 5 Gauss–Lobatto–Legendre discretization points and
requires about 5 points per minimum wavelength of the problem under study. Very
distorted mesh elements can be accurately handled.5 Complex models that include
fluid, elastic, viscoelastic, anisotropic, or porous media6 can be modeled, making the
SEM a method of choice for the numerical modeling of wave propagation through
various types of media encountered in ocean acoustics. Furthermore, the calculation of
sensitivity kernels can be performed based on adjoint modeling.4,7 Although not con-
sidered in this letter, this is a key ingredient for tackling inverse problems. Finally, the
SEM is well-suited for parallel implementation on supercomputers, overlapping non-
blocking message-passing communications with calculations on the processors to hide
their cost;8 i.e., performing useful calculations on the processors while communications
between processors (based on the Message-Passing Interface library) are traveling
across the network connecting them. Clusters of GPU graphics cards can also be used
efficiently with the spectral-element method.9 This is an important feature for high-
performance computing.

3. Underwater acoustics examples

The spectral-element method, because of its ability to handle coupled fluid-solid
regions, is a natural candidate for performing wave propagation simulations in under-
water acoustics in the time domain. Moreover, it is also known for being accurate to
model surface and interface waves.3 In this letter, we thus choose to focus on configu-
rations where such types of waves, also known as Stoneley–Scholte waves, can be
generated.

In order to validate the results obtained with this method, let us first consider
isovelocity waveguides with flat bottoms, which allow for the comparison with known
analytic codes commonly used in underwater acoustics. Since the SEM is a time-
domain method, it is necessary to go back to the frequency domain in order to gener-
ate the transmission losses. This is performed in two steps. A first step consists in cal-
culating the time series for all receivers. Then, in a second step, a fast Fourier trans-
form is performed for all time sequences to obtain the amplitude of the signal for a
given frequency. This way, the transmission losses for any frequency that belongs to
the band of the source signal can be calculated. For all the simulations, we consider a
Ricker pulse as the source wavelet. We perform the validation of the SEM by making
comparisons with the results provided by the SCOOTER FFP code,10 which we choose
because of its robustness and its ability to generate accurate solutions in the near field.
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Since the numerical simulations are performed here using the 2D version of the SEM,
we use the Cartesian coordinates option available in SCOOTER for the generation of the
transmission losses. This corresponds to a line source excitation along the third direc-
tion (i.e., perpendicular to the 2D plane).

For all the numerical simulations, we take the sound speed in the water layer
constant and equal to 1500 m/s and the density of water is equal to 1000 kg/m3.

2.1 Validation for shallow water acoustics

Let us present some results for the validation of the SEM for shallow water propaga-
tion simulations. The configuration consists of a waveguide of constant depth 400 m
with a point source emitting a Ricker wavelet with a dominant frequency of 30 Hz.
The finite element model consists of a structured mesh with a characteristic length
about k. The source depth is 395 m, i.e., close to ocean bottom. The density, compres-
sional and shear wave velocities in the bottom are q¼ 2000 kg/m3, cp¼ 2400 m/s, and
cs¼ 1200 m/s, respectively. With these parameters, a strong interface wave of the
Stoneley–Scholte type is excited because the source is close to the interface with the
ocean bottom. We consider a horizontal line of receivers situated at depth of 380 m.
This array is also located close to the ocean bottom and thus the presence of the inter-
face wave can easily be recorded. The position of the first receiver is x¼ 200 m and
that of the last receiver is x¼ 4000 m.

Figure 1 shows a snapshot of the signal received in the horizontal array at
x¼ 400 m. The time duration of the generated time sequence is 4.2 s. We do not cap-
ture all the successive reflections between the air-water and water-bottom interfaces,
but those that are missing have very small amplitudes. Note that the air is not discre-
tized in this study but rather represented by a free surface where pressure is enforced
to zero. The first arrival corresponds to the head wave associated to the compressional
speed of the ocean bottom, the second arrival is the direct wave that propagates in the
water, the third arrival is the Stoneley–Scholte wave whose velocity is cst¼ 1005 m/s and
the fourth and strong arrival corresponds to the reflection from the air-water interface.

For all the receivers of the horizontal array, we generate the transmission
losses at a given frequency. Figure 2 shows comparisons between the transmissions
losses generated from the time sequences calculated with SPECFEM2D and those

Fig. 1. Snapshot of the pressure signal recorded at position (x,z)¼ (400 m, 380 m).
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calculated with SCOOTER. The agreement is almost perfect even if the time duration of
the signal is limited.

2.2 Comparisons for different types of ocean bottoms

Since many types of media can be considered with the SEM, let us emphasize the influ-
ence of the type of medium that is used as a model of the ocean bottom on the propa-
gation of the acoustic waves in the water column. For this purpose, we first define a
porous medium for which we calculate the three different wave velocities that can
propagate in such a medium: the fast and slow compressional waves and the shear
wave. Then, we define successively an elastic and a fluid medium whose wave speeds
are identical to those of the porous medium and have as density the equivalent density
of the porous medium. All the physical parameters defining the porous medium are
indicated in Table 1. For more information on the type of porous model that is imple-
mented in SPECFEM2D the reader is referred to Morency and Tromp.6 We consider a
waveguide of constant 400 m depth with a 50 Hz Ricker point source located at a dis-
tance of 5 m from the interface with the bottom. The transmission losses calculated for
a frequency of 50 Hz are presented in Fig. 3. Two horizontal receiver lines are consid-
ered: One close to the interface with the ocean bottom (10 m away from the interface)
and one in the middle of the water column. It can be seen that the transmission losses
strongly depend on the type of ocean bottom when the receiver line is close to the
ocean bottom. The results are very different in the elastic case because of the presence
of an interface wave. In the case of a porous bottom, the snapshots indicate the ab-
sence of an interface wave, contrary to the elastic case. In future work, the influence of
the type of interface conditions between the porous bottom and water will need to be
further investigated.

When the receiver line is located in the middle of the water column, the phe-
nomena observed are different. Naturally, there is a difference between a fluid and an

Fig. 2. Transmission loss calculated with SCOOTER (dashed line) and SPECFEM2D (solid line) at 20 Hz (top) and at
30 Hz (bottom).
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elastic bottom. The presence of a shear wave strongly modifies the transmission losses
but the observed differences between the results with an elastic bottom and with a po-
rous bottom are less pronounced, indicating that the complexity introduced by model-
ing the ocean bottom with a porous medium does not significantly affect the acoustic
wavefield in the middle of the waveguide.

2.3 Propagation over a viscoelastic wedge

The configuration, taken from Ref. 11, corresponds to upslope propagation in a homo-
geneous water column over a viscoelastic bottom. The compressional and shear wave
velocities are 2400 and 1200 m/s, respectively. The density of the ocean bottom is 2000
kg/m3 which corresponds to a chalk-type bottom. Attenuation is modeled in the time
domain using two standard linear solids (i.e., damping mechanisms) in order to have a
roughly constant attenuation in the frequency band of the emitted signal.3 For both
compressional and shear waves, the attenuation is equal to 0.2 dB/k. The source is situ-
ated at the origin of the coordinate system at a depth of 590 m, i.e., close to the ocean
bottom. It is a point source emitting a Ricker wavelet with a dominant frequency of 8
Hz. From 0 to 2 km, the waveguide has a constant depth of 600 m. From 2 to 6 km,
it decreases linearly to a value of 100 m and then remains constant.

Movie Mm. 1 shows the propagation of the waves generated in this configura-
tion using the SEM. The horizontal size image corresponds to a 14 km long domain.
The successive reflections between the air-water and water bottom interfaces can be
seen. All these reflections generate successive wavefronts that propagate in the water
column and interfere at a certain distance to become one or several modes. The lateral
wave that connects by a straight line the two compressional waves that propagate in
the water column and in the ocean bottom is also clearly seen. Moreover, an interface
wave of the Stoneley–Scholte type is also generated. It can be also noticed, in the first
part of the wedge, that there is a stationary regime that is generated and that ends up
in backward propagation. This phenomenon may be the cause of the discrepancy
between the parabolic equation results and the finite-elements results presented in Fig.
7 of Ref. 11. In that reference this discrepancy occurs at the same place where this phe-
nomenon is present in our movie. Naturally, this requires further investigation to be
fully understood but this movie illustrates the amount of information provided by time
domain simulations, which can offer new insights into the physics of wave propaga-
tion, in particular in complex or coupled media.

Mm. 1. Movie showing acoustic wave propagation in the ocean over a viscoelastic wedge.
This is a file of type “animated gif” (12.3 MB).

Table 1. Porous medium properties selected for the simulation presented in Fig. 3.

Parameter Unit Value

Solid density kg=m3 2650
Fluid density kg=m3 1000
Porosity — 0.4
Tortuosity — 1.25
Solid bulk modulus GPa 36
Fluid bulk modulus GPa 2.25
Frame bulk modulus GPa 2
Fluid viscosity Pa�s 0
Frame shear modulus GPa 3.2
Equivalent density kg=m3 1990
Fast P speed m=s 2343
Slow P wave m=s 1065
S wave m=s 1385
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4. Conclusions and future work

We have presented some numerical results obtained with the SEM for ocean acoustic
configurations that illustrates the high potential of this method in this domain. The
configurations chosen were simple from the geometrical point of view but more com-
plex models can be considered if needed. Rough surfaces as well as buried or immersed
objects or sound speed gradients can be modeled because the SEM belongs to the fam-
ily of finite-element methods. The main difficulty lies in meshing the model. This diffi-
culty can be overcome with modern meshing software packages. Moreover, for some
situations in which the size of the problem is small, many simulations can be per-
formed with different rough surface realizations, which makes it possible to tackle
reverberation problems. A large variety of problems can be handled, which makes the
SEM a method of choice for the numerical simulation of full wave propagation in
ocean acoustics.

In future work we will report results for more complex models. For instance,
we think that the numerical simulation of the 2D full wave propagation in the time do-
main of a few kHz source signal in a few kilometers long domain is possible on a mod-
ern computing cluster with a few hundred processor cores. If the source frequency is
lowered, the size of the domain can be increased and vice versa. 3D simulations are
also possible but may require a larger computer.
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