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Abstract
This work concerns numerical aspects of a one-way

formulation of the acoustic wave equation. We focus our
study on a system of coupled one-way equations which
generalizes the multi-step one-way modelling proposed
by Kiyashchenko, Plessix and Kashtan. We show how the
performance of the numerical method can be improved by
developping a fast numerical algorithm whose efficiency
is illustrated by some numerical experiments.

Introduction
The Reverse Time Migration (RTM) is an efficient me-

thod for depth imaging. RTM is based upon successive
solutions of the wave equation and it obviously depends
on the accuracy of the numerical solution of the wave
equation but also on the computational burden which
must be the lowest as possible to be applied to 3D pro-
blems in heterogeneous media. The migration process
uses sismograms which involve two quantities: the arri-
val times and the amplitudes of the reflected waves which
respectively represent the kinematics and the dynamics
of the propagation medium. Solving one-way equations
provide a fast solution for the acoustic wave equation
which allows one to reproduce the kinematics but the am-
plitudes of the wave fields are generally erroneous be-
cause the one-way model neglects coupling terms mode-
ling the transmission effects between the different mate-
rials constituting the propagation medium. Zhang et al.
[6] have proposed an approximate formulation including
an additional term to correct the amplitude of the solu-
tion. More recently, Kiyashchenko et al. [4] have propo-
sed a multi-step one-way modelling which is equivalent
to the wave equation. Herein we focus our attention on
a first-order formulation which has been derived by M.V.
De Hoop [2] in the framework of micro-local analysis.

The complete first-order formulation of the acoustic
wave equation

The wave equation can be written as a first-order sys-
tem of coupled equations after the time variable has been
supressed by using a Laplace transform. The principal
part of the system can be diagonalized and the reduced
system involves then pseudo-differential operators. In

practice, the numerical solution is obtained by solving
an approximation of the reduced system in which the
pseudo-differential operators have been replaced by their
principal part. This is the system we consider and des-
cribe below.
Let x, y, z be the cartesian coordinates. Let us consider
a domain Ω in z > 0 whose surface is given by the set
z = 0. Then the first-order wave equation system reads
as:

(Dz + iωΛ)V = RV + PF in Ω (1)

where Λ is diagonal with Λ = diag(Γ,−Γ) and Γ is a
pseudo-differential operator whose symbol γ is given by:

γ =

 1
c2 (~x)

−

∣∣∣~k′∣∣∣2
ω2


1/2

. (2)

Operator R represents the coupling terms describing the
reflexion and transmission phenomena and has the form:

R =

 T Rdu

Rud T

 (3)

The vector F is defined from the source S, for instance
S is a Ricker function acting at z = 0. The unknown
V has two components respectively denoted by Vd and
Vu which respectively propagate in the direction z > 0
and in the opposite sense. Hence Vd is the downward
part of the wave field while Vu is its upward part. The
operator P is supposed to be invertible and allows one to
construct the solution U to the wave equation from the
relation V = PU. Moreover, P can be chosen such that
T = −Rdu = −Rud. The operator T represents the
transmission effects while Rdu and Rud correspond to the
reflections. The transmission operator is defined as the
principal part of −1

2Γ−1 ∂T
∂z which means that the symbol

of T is given by:

σ (T ) =
ω2

2c3γ2

∂c

∂z
(4)

The above formula shows that when the medium is homo-
geneous, T is the null operator since the velocity c does



not vary. Thus in that case, the two components of V are
uncoupled and satisfy a one-way system, involving the
square-root of the Helmholtz operator in Γ. In the ge-
neral case, the two components are coupled through Rdu

and Rud and since the symbol of T is real-valued, T af-
fects the amplitude of each component of V. Hence if T
is neglected, the dynamics is erroneous.

Numerical scheme
System 1 can be solved by using different approaches.

Here we choose to expand the solution V as a Neumann
series and to compare our method to the one formerly pro-
posed by [4]. Assume that the inverse G of Dz + iωΛ is
known. Then V is given by:

(I −GR) V = GF (5)

Next the formal inverse of I − GR is represented by a
Neumann series and we have:

V =
∑

j≥0 VjV0 = GF and Vj = GRVj−1 (6)

The first iterate V0 is obtained by solving two uncou-
pled one-way equations and models the propagation of
the source F . The iterate V1 corrects V0 by accounting
for the reflection and transmission terms. It is solution to
:

(Dz + iωΛ)V1 = RV0 (7)

and the iterate Vj , j ≥ 2 is obtained by solving the same
problem as above with Vj in place of V1 and Vj−1 in
place of V0.
The numerical approximation of V is defined by compu-
ting a finite number of iterates Vj and according to [5],
the performances of the numerical algorithm can be im-
proved by using an assembling process allowing one to
compute two iterates in the same time. In [5], both G
and R are represented by Fourier integrals and to limit
the computational burden, their respective symbol are ap-
proximated by a class of functions where k′ and (x, y) are
separate. Then the number of required Fourier transforms
decreases considerably.
In practice, the number of iterates is fixed at the beginning
and it is not necessary to compute a lot of terms to obtain
a high degree of accuracy.
Here we assume the upward part of V0 is null which
means the region z < 0 behaves like the free space.
Hence the propagation of the source involves the first one-
way equation only. To compute the next terms, it is ne-
cessary to solve the two one-way equations after the right-
hand side has been computed. Any entry of R is equal to

±T and T involves ∂zΓ. By definition of Γ, we have:

∂zΓ =
ω2∂zc

2c3
Γ−1 (8)

which implies that T acts like the principal part of

ω2∂zc

2c3
Γ−2 (9)

We can then observe that T involves the inverse of the
Helmholtz equation.
We now compare our approach to the one proposed by
Kiyashchenko et al. [4] for solving the scalar wave equa-
tion. To get the same type of numerical scheme, it is ne-
cessary to include the diagonal entries of R into the sys-
tem of one-way equations and thus, the left-hand side of
the system involves the extra terms of R only. We then get
the same type of numerical scheme than in [4] by chan-
ging Γ into the identity and T by its Padé approximation
at high-frequency. To replace Γ by the identity amounts
to consider the simplest high-frequency approximation.
Hence we can say that the numerical scheme in [4] corres-
ponds to a high-frequency approximation of our scheme.
Moreover, the solution computed in [4] corresponds to the
sum of V0 and V1 only while we can consider high-order
terms which do not require a high computational cost by
using the assembling process suggested in [5]. This is
why we claim that we generalize the approach in [4].

Illustrations
In that section, we intend to illustrate the performance

of our numerical scheme by considering a synthetic 2D
velocity model, the so-called GXT model. We represent
the arrival times and we compare our results with the ones
obtained by a finite element method. We use the SPEC-
FEM2D software.

Figure 1: Velocity model GXT



Figure 2: Sismogram obtained with the multi-step
one-way system

Figure 3: Sismogram obtained with the specfem2D
software

The model is composed of a top layer with relatively
low-velocity (water), a low-velocity layer (bottom of
the ocean), and two salt domes. There is a velocity
gradient, increasing as it goes deeper. The model is
28 x 6 kilometers, the source time function is a Ricker
centered at 30 Hz, located at the middle of the top of
the model, and the receivers, located along the top of
the model, recorded 8 seconds. We focus our attention
on the kinematics because we intend to apply migrations
techniques. We can then observe that the sismograms are
in good agreement and that the main interfaces such as
the bottom of the ocean, and the first salt dome can be
identified.

The next step of investigation concerns the application
of migration techniques based on our solver for the wave
equation. At present time, we are considering different
methods which will be presented and compared to com-
plete this work.
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