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ABSTRACT
We use a parallel spectral-element method to simulate the
propagation of seismic waves generated by earthquakes in
the entire 3-D Earth. The method is implemented using
MPI on a large PC cluster (Beowulf) with 151 processors
and 76 Gb of RAM. It is based upon a weak formulation
of the equations of motion and combines the flexibility of a
finite-element method with the accuracy of a pseudospectral
method. The finite-element mesh honors all discontinuities
in the Earth velocity model. To maintain a relatively con-
stant number of grid points per seismic wavelength, the size
of the elements is increased with depth in a conforming fash-
ion, thus retaining a diagonal mass matrix. The effects of at-
tenuation and anisotropy are incorporated. We benchmark
spectral-element synthetic seismograms against a normal-
mode reference solution for a spherically symmetric Earth
velocity model. The two methods are in excellent agreement
for all waves with periods greater than 20 seconds.

1. INTRODUCTION
Modeling seismic wave propagation resulting from large

earthquakes at the scale of the entire Earth using fully three-
dimensional (3-D) velocity models poses a formidable nu-
merical challenge. The effects of an anisotropic astheno-
sphere, a slow and very thin crust, sharp fluid-solid discon-
tinuities at the inner-core (ICB) and core-mantle (CMB)
boundaries, and attenuation must all be accounted for. In
this article we demonstrate that the spectral-element method
(SEM), introduced more than 15 years ago in computational
fluid mechanics [12], can meet this challenge. We reach un-
precedented resolution by using a message-passing algorithm
on a large cluster of PCs (Beowulf) with 151 processors and
76 Gb of RAM.

The SEM has previously been used to accurately model
wave propagation on local and regional scales [13, 8, 11]. Ex-
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amples of such local or regional simulations include seismic
risk assessment in sedimentary basins such as Los Angeles,
Tokyo or Mexico City, and active seismic experiments in
oil fields for the petroleum industry. It has also recently
been applied to the problem of global wave propagation in
innovative work by [5] and [4]. They use a so-called ‘mor-
tar’ version of the SEM [1], which allows for non-conforming
meshes. This makes mesh design more flexible, but comes at
a significant increase in the complexity and cost of the im-
plementation, because the mass matrix is no longer diagonal
on the non-conforming interfaces, and as a result an iterative
solver has to be used to solve the non-diagonal system. In
this work we use a classical SEM based upon a conforming
mesh that retains a diagonal mass matrix, thus greatly sim-
plifying the algorithm and reaching high parallel efficiency,
which in turn allows us to perform for the first time 3-D
global simulations at unprecedented resolution. Compared
to previous works, we introduce the effect of anisotropy of
seismic velocities in the asthenosphere (the upper 220 km
of the Earth in the upper mantle), and also incorporate
the effect of attenuation of the waves (loss of energy due
to anelastic behavior of the materials). In addition, we also
employ a powerful way of handling the fluid region of the
model (the fluid outer core of the Earth, which is in contact
with the solid mantle and the solid inner core) based upon
a simple and efficient domain decomposition technique.

2. DESIGNING A MESH FOR THE EARTH
As in any finite-element method, a first crucial step to-

wards the accurate simulation of 3-D seismic wave propa-
gation resulting from earthquakes is the design of a mesh.
A classical spectral-element method (SEM) relies upon a
mesh of hexahedral finite elements Ωe that are isomorphous
to the cube. Tetrahedra that are classical in finite element
methods are excluded in the SEM because of the tensorisa-
tion of the polynomial basis that is required to obtain an
exactly diagonal mass matrix, as will be explained in Sec-
tion 3. The six sides of each hexahedral element must match
up exactly with the sides of neighboring elements. Such a
mesh is traditionally called a geometrically conforming mesh
in the finite-element literature. For reasons of accuracy, a
good mesh should honor all the major velocity discontinu-
ities in the model, and the size of the elements should reflect
the distribution of wave speeds, such that one maintains a
relatively similar number of grid points per seismic wave-
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Figure 1: View of the six building blocks that con-
stitute the cubed sphere. Analytical relations map
each of the six faces of the cube to the surface of the
sphere. Besides a top and bottom, each block has
four sides that need to match up exactly with four
other blocks to complete the cube, as indicated by
the arrows. The mesh size also needs to be increased
in the globe as a function of depth to maintain a sim-
ilar number of grid points per wavelength through-
out the model. This is accomplished in three stages;
schematically, these four sides have one of three de-
signs: A, B, or C, as illustrated on the right. When
the six blocks are fitted together to make the entire
globe, they match perfectly.

length throughout the model. Since wave speed generally
increases with depth in the Earth, this implies that the el-
ements should become gradually larger with depth. These
requirements make the design of a good mesh for the globe
challenging.

The mesh we use is based upon the concept of the quasi-
uniform gnomonic projection, or ‘cubed-sphere’ [15, 17, 14]
that was first introduced for seismic wave propagation prob-
lems by [5]. The key idea is to map each of the six sides of
a cube to the surface of the sphere. An increase in element
size, to adapt it to the variations of wave speed with depth,
can be obtained by first doubling the mesh in one lateral di-
rection, and, subsequently, at a greater depth, increasing its
size in the other lateral dimension. Figure 1 illustrates how
this may be accomplished for the entire globe based upon a
three-stage doubling as a function of depth. Note that there
are three types of chunks: AB, AC, and BC. In each of the
types the doubling is performed at different levels, such that
the final six chunks fit together perfectly to make the entire
globe.

The final mesh used in the simulations is shown in Figure 2
and is designed to honor all velocity discontinuities in the
spherically-symmetric 1-D standard reference wave velocity
model for the Earth, which is called the Preliminary Refer-
ence Earth Model (PREM) [7]. Each of the six chunks has
240 × 240 elements at the free surface and, as a result of the
three doublings with depth, 30 × 30 elements at the ICB.

Figure 2: Mesh used for the simulations presented
in this study. It honors all velocity discontinuities
in the Earth model. The mesh is doubled in size
three times with depth. Each of the six chunks has
240 × 240 elements at the surface of the Earth and
30 × 30 elements at the inner-core boundary. The
triangle indicates the location of the epicenter of the
earthquake, situated on the equator and the Green-
wich meridian. Rings of receivers (seismic recording
stations) with a 2-degree spacing along the equa-
tor and the Greenwich meridian are shown by the
dashes.
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Figure 3: To avoid a mesh singularity associated
with the Earth’s center, we place a cube at the cen-
ter of the solid inner core, following the idea intro-
duced by [5]. This figure shows the actual mesh
used. Note that there is a layer of three elements
between the inner-core boundary and the central
cube. Note also that element size within the cen-
tral cube is not constant; this reflects a match-up
with the angularly equidistant mesh at the inner-
core boundary.

To avoid singularities of coordinates at the Earth’s center,
[5] introduced the idea of placing a cube around the center
of the inner core. We make use of this idea in the present
study. The mesh within this cube needs to match up with
the cubed sphere mesh at the ICB, as shown in Figure 3.

3. THE SPECTRAL-ELEMENT METHOD

3.1 Equations of seismic wave motion
The elastic wave equation for the Earth’s mantle, crust

and solid inner-core may be written in the form

ρ ∂2
t s = ∇ · T, (1)

where ρ denotes the 3-D distribution of density and T the
stress tensor which is linearly related to the displacement
gradient ∇s by Hooke’s law, T = c : ∇s. In its most gen-
eral form, e.g., in a triclinic crystal, the fourth-order elastic
tensor c has 21 independent components (e.g., [2]). Two
types of boundary conditions must be considered: on the
surface of the Earth the traction n̂ ·T, where n̂ denotes the
unit outward normal on the free surface, vanishes, and on
the CMB and the ICB (i.e., the fluid-solid boundaries) the
normal component of velocity n̂ · v and the traction n̂ · T
are continuous.

Spectral-element methods, like finite-element methods, are
based upon an integral or ‘weak’ formulation of the problem.
This formulation is obtained by taking the dot product of

the momentum equation (1) with an arbitrary test-vector w,
integrating by parts and imposing the stress-free boundary
condition. This gives

∫
M

ρw · ∂2
t sd3r = −

∫
M

∇w : T d3r + M : ∇w(rs) S(t)

−
∫

CMB

w · T · n̂d2r. (2)

To correctly model interactions between the solid mantle
and the fluid outer core, we need to impose the continuity of
traction and of the normal velocity at the CMB. We imple-
ment the fluid-solid interactions based upon a simple and
efficient domain decomposition method: in the mantle we
impose the continuity of traction and in the fluid outer core
we impose the continuity of normal velocity. The equations
in the solid inner core of the Earth are similar to those pre-
sented above and are therefore not detailed here (since it is
also a solid region in contact with the fluid outer core).

In the fluid outer core, the equation of motion can be
written in terms of a scalar potential χ as

κ−1∂2
t χ = ∇ · (ρ−1∇χ), (3)

where κ is the bulk modulus of the fluid. That potential is
related to pressure in the fluid by p = −∂tχ. The weak form
of this equation is obtained by multiplying it by a scalar
test function w and integrating by parts. At the fluid-solid
matching interfaces (the CMB and the ICB) we need to im-
pose the continuity of normal velocity, therefore we replace
the normal component of velocity n̂ · v in the integrals over
the CMB and ICB with the normal component of veloc-
ity n̂ · ∂ts in the mantle or inner core, which gives:

∫
OC

κ−1w∂2
t χ d3r = −

∫
OC

ρ−1∇w · ∇χ d3r

−
∫

CMB

w n̂ · ∂tsd2r +

∫
ICB

w n̂ · ∂ts d2r. (4)

3.2 Interpolation, integration and discretiza-
tion

To represent the displacement field on an element requires
the introduction of grid points in each element. Typically,
in a SEM it is optimal (in terms of the precision/cost ra-
tio) to use Lagrange polynomials of degree 4 to 10 for the
interpolation of functions [16]. This is much higher than
the degree-1 or degree-2 approximations classically used in
finite-element methods. The control points ξ are chosen to
be the l + 1 Gauss-Lobatto-Legendre points, which are the
roots of (1 − ξ2)P ′

l (ξ) = 0, where P ′
l denotes the deriva-

tive of the Legendre polynomial of degree l (e.g., [3]). The
reason for this choice is that it leads to an exactly diagonal
mass matrix and therefore to fully explicit time schemes,
which greatly simplifies the implementation of the method,
in particular on a parallel computer. Functions f , such as
the displacement field s and the test vector w, are inter-
polated in terms of triple products of Lagrange polynomi-
als. This choice of test vector makes the SEM a Galerkin
method, because its basis functions are the same as those
used to represent the displacement. The gradient of a func-
tion, ∇ f =

∑3
i=1 x̂i∂if , evaluated at the Gauss-Lobatto-
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Legendre point x(ξα′ , ηβ′ , ζγ′), may be written in the form

∇ f(x(ξα′ , ηβ′ , ζγ′)) ≈
3∑

i=1

x̂i

[ nα∑
α=0

fαβ′γ′
�′α(ξα′)∂iξ

+

nβ∑
β=0

fα′βγ′
�′β(ηβ′)∂iη +

nγ∑
γ=0

fα′β′γ�′γ(ζγ′)∂iζ

]
, (5)

where the �′(ξ) represent the derivatives of the Lagrange in-
terpolants at the Gauss-Lobatto-Legendre points, and the
∂jξ are the partial derivatives of the Jacobian transforma-
tion of the coordinate system to the [−1, 1]3 reference cube.

To solve the weak form of the equations of motion, nu-
merical integrations over the elements need to be performed.
In a spectral-element method, one uses the Gauss-Lobatto-
Legendre integration rule:

∫
Ωe

f(x) d3x =

∫ ∫ ∫ 1

−1

f(x(ξ, η, ζ)) J(ξ, η, ζ) dξ dη dζ

≈
nα,nβ ,nγ∑
α,β,γ=0

ωαωβωγfαβγJαβγ , (6)

where the ωα denote the weights associated with the Gauss-
Lobatto-Legendre quadrature (e.g., [3]), and J is the Jaco-
bian of the transformation of the coordinate system to the
[−1, 1]3 reference cube.

The term on the left hand side of the weak form of the
equation of motion (2) is traditionally called the mass ma-
trix in finite-element modeling. At the elemental level, this
integration may be written as

∫
Ωe

ρw · ∂2
t s d3x

=

∫ ∫ ∫ 1

−1

ρ(x(ξ))w(x(ξ)) · ∂2
t s(x(ξ), t) J(ξ) d3ξ

≈
nα,nβ ,nγ∑
α,β,γ=0

ωαωβωγJαβγραβγ
3∑

i=1

wαβγ
i s̈αβγ

i (t). (7)

By independently setting factors of wαβγ
1 , wαβγ

2 and wαβγ
3

equal to zero, since the weak formulation (2) must hold for
any test vector w, we obtain an equation for each compo-
nent of acceleration s̈αβγ

i (t) at grid point (ξα, ξβ , ξγ), that we
can subsequently march explicitely in time. The remarkable
property of equation (7) is that the value of acceleration

at each point of a given element, s̈αβγ
i (t), is simply mul-

tiplied by the factor ωαωβωγραβγJαβγ , i.e., as mentioned
earlier, the elemental mass matrix is exactly diagonal. This
has a very important implication in practice, since it greatly
simplifies the message-passing implementation of the SEM
algorithm. Note also that in this respect the SEM signifi-
cantly differs from more traditional finite-element methods,
in which a sparse (i.e., non diagonal) system would be ob-
tained.

The next integral that needs to be evaluated is the stiff-
ness matrix (the first term of the right-hand side of equa-

tion (2)). We find∫
Ωe

∇w : T d3x ≈
nα,nβ ,nγ∑
α,β,γ=0

3∑
i=1

wαβγ
i

[
ωβωγ

nα′∑
α′=0

ωα′Jα′βγ
e F α′βγ

i1 �′α(ξα′)

+ ωαωγ

nβ′∑
β′=0

ωβ′Jαβ′γ
e F αβ′γ

i2 �′β(ηβ′)

+ ωαωβ

nγ′∑
γ′=0

ωγ′Jαβγ′
e F αβγ′

i3 �′γ(ζγ′)

]
,(8)

where Fik =
∑3

j=1 Tij ∂jξk. The value of the stress tensor T
is determined by Hooke’s law, T = c : ∇s. This calculation
requires knowledge of the gradient of displacement ∇s at the
Gauss-Lobatto-Legendre integration points, which is given
by:

∂isj(x(ξα, ηβ , ζγ), t) =[
nσ∑

σ=0

sσβγ
j (t)�′σ(ξα)

]
∂iξ(ξα, ηβ , ζγ)

+

[
nσ∑

σ=0

sασγ
j (t)�′σ(ηβ)

]
∂iη(ξα, ηβ , ζγ)

+

[
nσ∑

σ=0

sαβσ
j (t)�′σ(ζγ)

]
∂iζ(ξα, ηβ , ζγ). (9)

The remaining volume and surface integrals in (2) and (4)
are identical in form to other integrals already discussed in
this section.

3.3 Assembly of the system and time marching
In each spectral element, functions are sampled at the

Gauss-Lobatto-Legendre points. Grid points that lie on the
sides, edges, or corners of an element are shared amongst
neighbors. Therefore, as in a classical finite-element method,
we need to distinguish the local mesh of grid points that de-
fine an element from the global mesh of all the grid points in
the model, many of which are shared amongst several spec-
tral elements. Note that there are three unknowns (or ‘de-
grees of freedom’ in finite-element parlance) per grid point
in the solid regions of the model (the three components of
the displacement vector), but only one degree of freedom
in the fluid outer core (the generalized scalar potential χ).
The contributions to the degrees of freedom (i.e., the inter-
nal forces computed separately) from all the elements that
share a common global grid point need to be summed to ob-
tain the right global internal forces. In a traditional finite-
element method this is referred to as assembling the sys-
tem. This assembly stage is a costly part of the calculation
on parallel computers, because information from individual
elements needs to be shared with neighboring elements. In
a SEM, this is the only operation that involves communica-
tions between distinct CPUs (implemented based upon MPI
in practice).

To take full advantage of the fact that the global mass ma-
trix is exactly diagonal, time discretization of the resulting
global second-order ordinary differential equation obtained
after assembling the system is achieved based upon an ex-
plicit second-order finite-difference scheme. Such a scheme,
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which is a particular case of the general Newmark scheme for
second-order hyperbolic systems [9], is conditionally stable,
and the Courant stability condition is governed by the max-
imum value of the ratio between the pressure wave velocity
and the size of the grid spacing.

4. PARALLEL IMPLEMENTATION USING
MPI ON A BEOWULF

We implement the method on a cluster of PCs using mes-
sage passing (MPI). In our SEM, since the mass matrix is
exactly diagonal by construction, the PCs spend most of
their time doing computations, and communications repre-
sent only a small fraction of the time of simulation. There-
fore, this is an optimal situation for a parallel implemen-
tation, and clusters of PCs are ideal for this application in
spite of the high latency of the network connecting them.

The SEM calculations are performed on a Beowulf in the
Seismological Laboratory at Caltech. This machine consists
of 76 dual-processor PCs with 1 Gigabyte of memory each.
The PCs are connected using standard 100-Mbits Ethernet.
The simulations are distributed over 151 processors. Each
of the six chunks that constitute the globe is subdivided
amongst 25 processors (corresponding to 25 mesh slices),
and the cube at the center of the inner core uses one sepa-
rate processor. Figure 4 shows how the slices are designed
in the cubed-sphere mesh. Note that inside each of the six
chunks the mesh of slices is derived from a regular Carte-
sian topology. However, the message passing topology must
be different between chunks: each corner of each chunk is
shared between three rather than two or four slices. This
complicates the message-passing implementation. We solve
the problem using a three-step sequence of messages: we
first assemble the contributions between slices inside each
chunk; then between slices located on the edges of different
chunks, excluding the corners of valence 3; then in a last
step we assemble these corners separately.

The mesh shown in Figures 2 and 3 contains a total of
approximately 2.6 million spectral elements. In each spec-
tral element we use a polynomial degree N = 4 for the ex-
pansion of the Lagrange interpolants at the Gauss-Lobatto-
Legendre points, which means each spectral element con-
tains (N + 1)3 = 125 points, and the total global system
of ordinary differential equations, counting common points
on the edges of the elements only once, contains 179 million
points (i.e., approximately 539 million degrees of freedom
since we solve for the three components of displacement at
each grid point in the solid regions). After division of the
mesh into slices, each processor is responsible for 17,000 el-
ements. With a polynomial degree N = 4, this corresponds
to roughly 1.1 million grid points per processor.

The central cube in the inner core, shown in Figure 3,
poses yet another difficulty from a message-passing point of
view. Since it is handled by a separate processor, and since
it shares grid points with all the other slices, a separate
communication pattern has to be implemented based upon
a master-slave programming philosophy: all the slices send
their contributions (the internal forces computed locally) to
the central cube, which acts as a master, collecting and sum-
ming them, and then sending the result back to the slices,
which act as slaves. The number of elements in the central
cube is smaller than in any of the slices, which ensures that
load balancing of the application is unaffected.

Figure 4: In the parallel MPI implementation, each
of the six chunks that makes up the cubed sphere is
subdivided in terms of 25 slices of elements (top).
Each of these slices resides on a single CPU. The
central cube (bottom) is handled by one extra pro-
cessor, such that the entire calculation involves 151
CPUs. The results on the edges of a slice need to
be communicated to all its neighbors. Note that
the communication patterns are different for slices
inside a chunk, on the edges of a chunk, and on
the corners of a chunk. The MPI communication
pattern is particularly difficult for the central cube,
which is handled by a separate processor that needs
to communicate with all the other processors, be-
cause every slice of the mesh touches it (here some
slices have been removed for clarity). One needs
to use a master/slave programming methodology in
order to avoid communication patterns that could
deadlock.
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5. THE GREAT BOLIVIAN EARTHQUAKE
OF JUNE 9, 1994

We benchmark the SEM against an independent reference
solution for the anisotropic reference Earth velocity and den-
sity model PREM. We use the mesh and source-receivers
(i.e., epicenter of the earthquake and seismic recording sta-
tions) geometry shown in Figure 2. For simplicity, the epi-
center of the earthquake is located on the equator and the
Greenwich meridian. Note that because the PREM velocity
model is spherically symmetric, this is strictly equivalent
to using the real location of the event in Bolivia. Seis-
mic stations record ground displacement along the equa-
tor and the Greenwich meridian at 2-degree intervals. For
comparison and validation, we use a classical independent
reference solution computed based upon a quasi-analytical
normal-mode summation technique (e.g., [6]). Note that
the normal-mode method is very accurate, but limited to
spherically-symmetric models (i.e., to 3-D simulations in 1-
D radial structures such as PREM), whereas our SEM can
handle fully 3-D velocity models.

We simulate a large and very deep earthquake of magni-
tude Mw = 8.2 that occured in Bolivia on June 9, 1994, at
a depth of 647 km. This earthquake is one of the largest
deep events ever recorded, and has therefore generated a lot
of attention in the seismological community. The event has
significant energy down to a period of about 15 seconds (i.e.,
for frequencies below 67 mHz). We also include the effect of
attenuation (i.e., anelastic behavior) in this simulation; the
reader is referred to [10] for more details on how attenua-
tion is implemented in the SEM (it is not straightforward
to implement attenuation in time-domain methods, because
in principle determining the current state of an anelastic
medium requires a convolution with all the past history of
that medium, which is of course numerically impossible).

In Figure 5 we represent an image of the seismic waves at
two different times, showing how the pressure, shear and sur-
face waves propagate across the Earth. In Figure 6 we com-
pare normal-mode and SEM synthetic seismograms (i.e., the
displacement of the Earth’s surface with time at a given loca-
tion) at a distance of 5 degrees south of the epicenter in Bo-
livia. We find excellent agreement between the two results.
In particular, the pressure (P) wave and shear (S) wave ar-
rivals, as well as the strong near-field term linking them,
are accurately modeled, and the static offset of 6.6 mm
on the vertical component of displacement and 7.3 mm on
the North-South component is also well recovered. This so-
called static offset corresponds to a permanent displacement
of the surface of the Earth around the epicenter, due to the
very large magnitude of the earthquake (this permanent dis-
placement is also very clear on the second image of Figure 5).
Note also the distinct arrival called ScS on this component
at 800 seconds and the arrival called sScS at 1080 seconds,
which are perfectly reproduced. These so-called ScS phases
are waves that travel down to the core-mantle boundary at
a depth of 2891 km, where they are reflected because of the
fluid-solid impedance contrast, and then travel back to the
surface.

Next, we check the results of our simulation at a seis-
mic station located in Pasadena, California, at an epicentral
distance of 68◦. In Figure 7 we compare our SEM syn-
thetic calculation for the vertical component of velocity to
the real data recorded during the actual event. The signals

Figure 5: Movie of the propagation of seismic waves
in the Earth during the large magnitude 8.2 Bo-
livia earthquake of June 9, 1994. The waves travel
all across the globe. They can be seen propagating
across the United States for instance. The earth-
quake is so large that it produces a permanent dis-
placement of the surface of the Earth of several mil-
limeters (1/4th of an inch) around the epicenter in
Bolivia. Note that this effect extends as far North
as the Amazon river.
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Figure 6: SEM (red) and quasi-analytical normal-
mode reference (blue) synthetic seismograms for the
great magnitude 8.2 Bolivia earthquake of June 9,
1994 recorded 5 degrees south of the epicenter. The
depth of the earthquake is 647 km. Anisotropy and
attenuation are both included in this simulation.
Top: North-South component of displacement of the
Earth’s surface, Bottom: vertical component. Note
the strong near-field term linking the pressure (P)
and shear (S) waves, the large 6.6 mm and 7.3 mm
static offsets observed on the two components, as
well as the strong ScS and sScS shear waves reflected
off the fluid outer core of the Earth.
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Figure 7: Comparison between our SEM synthetic
seismograms for the anelastic, anisotropic reference
Earth model PREM, and real seismic data recorded
in Pasadena, California, during the actual June 9,
1994, Bolivia earthquake. The vertical component
of the velocity vector is shown. The agreement ob-
tained is very good, considering that our SEM re-
sults do not include the full complexity due to 3-D
model heterogeneity, in particular in the crust and
the mantle of the Earth.

recorded correspond to the waves that travel across South-
ern California on the movie of Figure 5. Both records have
been lowpass-filtered with the same six-pole two-pass But-
terworth filter with a corner period of 40 seconds (i.e., a cor-
ner frequency of 25 mHz), and our synthetics have been con-
volved with the instrument response of the seismic station.
The agreement is quite satisfactory, keeping in mind that our
synthetics are based upon the spherically-symmetric refer-
ence model PREM and therefore do not include more com-
plex effects due to 3-D model heterogeneity. We are cur-
rently in the process of taking such 3-D velocity models into
account in our SEM.

To illustrate that our implementation of the inner core
with the central cube of Figure 3 is correct, we show in Fig-
ure 8 a close-up of the so-called PKP arrivals on the vertical
component of the displacement vector around the antipode
of the epicenter of the earthquake. The PKP phases are
waves that have traveled as pressure waves both in the man-
tle and in the outer core of the Earth. These phases have
three branches: PKP(AB) and PKP(BC), which travel in
the fluid outer core but not in the solid inner core, and
PKP(DF), which goes into the inner core. The PKP(DF)
waveform is very sensitive to the very slow shear-wave ve-
locity of about 3.6 km.s−1 in the inner core. If this unusu-
ally low velocity is not correctly represented numerically,
the PKP(DF) waveform changes considerably. This poses a
challenge, because if the mesh is not fine enough the very
slow shear-wave velocity is not sampled by enough points
per seismic wavelength, and as a result strong numerical
noise is generated.

In our results, the PKP(AB) and PKP(BC) outer core
branches as well as the PKP(DF) inner core branch are
all very accurately modeled. The PKP(DF) arrival trav-
els through the small cube at the center of the inner core
which is handled by one processor that needs to interact
with all the other processors in the parallel implementation
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Figure 8: Record section comparison of outer-
core and inner-core PKP pressure waves calculated
for the anelastic, anisotropic Earth velocity model
PREM based upon the SEM (solid lines) and an in-
dependent quasi-analytical normal-mode reference
calculation (dotted lines) between 130◦ and 230◦. At
each epicentral distance we plot both the SEM and
the normal-mode solution. All PKP arrivals, in-
cluding PKP(DF), which has traveled through the
central cube in the mesh (Figure 4), are well re-
produced. This validates the master/slave parallel
programming methodology that is used to imple-
ment the inner core, as illustrated in Figure 4. It
also demonstrates that we can correctly handle the
unusually low value of shear-wave velocity in the
Earth’s inner core.

Figure 9: Projected evolution until 2012 of micro-
processor clock speed, memory capacity and number
of transistors per chip, showing that around 2010 the
scientific community might have access to Petaflop
machines consisting typically of several tens of thou-
sands of chips. Courtesy Dr. Tom Sterling, Caltech.

of the method (Figure 4), therefore this result validates all
of our MPI implementation.

6. CONCLUSIONS AND PERSPECTIVES
We have developed and implemented a parallel MPI spec-

tral element method (SEM) for the simulation of seismic
wave propagation resulting from large earthquakes at the
scale of the full 3-D Earth. The method has been bench-
marked against a classical quasi-analytical normal-mode ref-
erence solution for the spherically symmetric Earth velocity
model PREM. Excellent agreement has been obtained.

The calculations presented in this paper required 151 pro-
cessors and 50 Gb of memory and used tens of hours of
CPU time. These requirements may seem large, but within
ten years, computers reaching 1000 teraflops (1 petaflop)
will become available, and the calculations presented in this
study will be performed routinely in a matter of seconds or
minutes. For instance, Figure 9 (courtesy of Dr. Tom Ster-
ling from his Supercomputing’2000 presentation) shows the
expected evolution of microprocessor clock speed, memory
capacity and number of transistors per chip. One can see
that according to these projections, around 2010 the scien-
tific community might have access to Petaflop machines con-
sisting typically of several tens of thousands of chips. This
is in agreement with a linear extrapolation (in a semilog
scale) until 2010 of the evolution of the speed of the fastest
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Figure 10: Linear extrapolation in a semilog scale
(yellow curve) of the projected evolution of the
speed of the fastest computer of the TOP500
list (www.top500.org) until 2010, showing that the
fastest computers might reach the petaflop range
10 years from now. Courtesy Dr. Tom Sterling,
Caltech.

computer of the TOP500 list (www.top500.org). Figure 10
(also courtesy of Dr. Tom Sterling from his Supercomput-
ing’2000 presentation) shows that the world’s fastest com-
puters might reach the petaflop range 10 years from now.
Let us mention that the ASCI and the Blue Gene projects
already plan to reach 30 to 100 Teraflops around 2003-2005.

We are also currently in the process of adding more com-
plexity to our simulations in terms of the Earth model used,
i.e., fully 3-D mantle models with lateral variations of den-
sity and pressure and shear-wave velocities, ellipticity and
surface topography of the Earth, as well as gravity and ro-
tation (Coriolis force) which have an effect on long-period
surface waves.
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