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Introduction

The accurate calculation of seismograms in realistic 3-D
Earth models has become a necessit y in seismology. A
large arsenal of numerical techniques is available for
this purpose. Among them, the most widely used ap-
proac h is probably the �nite-di�erence method (Virieux,
1986). Unfortunately, signi�cant di�culties arise in the
presence of surface topography and when anisotropy
needs to be incorporated. Pseudospectral methods
ha ve become popular, but are restricted to models with
smooth variations. The spectral-element method used
here w as introduced �fteen years ago in computational

uid dynamics (Patera, 1984). It has recen tly gained
interest for problems related to 2-D (Seriani et al., 1992;
T ordjman, 1995) and 3-D (Komatitsch and Vilotte, 1998;
Faccioli et al., 1997; Komatitsch and Tromp, 1999) wave
propagation. The method easily incorporates free surface
topography and accurately represents the propagation
of surface waves. The e�ects of anisotropy (Komatitsch
et al., 2000a) and 
uid-solid boundaries (Komatitsch
et al., 2000b) can also be accommodated. The method
lends itself well to parallel computation with distributed
memory (Komatitsch and Vilotte, 1998).

Equations of Motion

The displacement �eld s produced by an earthquake is
governed b y the momentum equation � @

2

t s = r � T+ f .
The distribution of density is denoted by �. The stress
tensor T is linearly related to the displacement gradi-
entrs by Hooke's law, whic h in an elastic,anisotropic
solid may be written in the form T = c : rs. In an
atten uating medium, Hooke's law needs to be modi�ed
such that the stress is determined by the entire strain
history:
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In seismology, the qualit y factor Q is observed to be
constan t over a wide range of frequencies. Such an
absorption-band solid may be mimicked b y a series ofL
standard linear solids, in the form
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where cRijkl denotes the relaxed modulus, and H(t) is the
Heaviside function. Using the absorption-band anelastic

tensor (2), the constitutive relation (1) may be rewritten

in the form T = c
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The components of the unrelaxed modulus cUijkl are giv en
by
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and the modulus defect �c` associated with each individ-
ual standard linear solid is determined by
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We use the equivalent weak form of these equationsZ
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where the stress tensor T is determined in terms of the
diplacement gradien trs by Hooke's law.

Elements

Each hexahedral spectral element 
e can be mapped to
a reference cube. Points within this reference cube are
denoted by � = (�; �; �). A t least eight corner nodes are
needed to de�ne a hexahedral volume element; by adding
mid-side and center nodes the number of anchors can
become as large as 27.

Integrations over the volume 
 are subdivided into
smaller integrals o ver the volume elements 
e. The con-
trol points ��, � = 0; : : : ; n`, needed in the de�nition of
the Lagrange interpolation polynomials of degree n` are
chosen to be the n` + 1 Gauss-Lobatto-Legendre points.
These points can be computed numerically.

In a SEM for w avepropagation problems one typically
uses a polynomial degree n` between 5 and 10 to represent
a function on the element (Komatitsch and Vilotte, 1998).
On each volume element 
e a function f is interpolated
by triple products of Lagrange polynomials of degree n`
as:
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where f
��
 = f(x(��; �� ; �
)). Using this polynomial

represen tation, the gradient of a function, rf , may be
written in the form

rf(x(�; �; �)) �
3X

i=1
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where di�erentiation in the reference domain is performed
by analytically di�erentiating the Lagrange interpolation
polynomials.

A t this stage, in tegrations o ver elements 
e may be ap-
proximated using the Gauss-Lobatto-Legendre integra-
tion ruleZ
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T o facilitate the integration of functions and their partial
derivatives over the elements, the values of the inverse
Jacobian matrix @�=@x need to be stored at the (n` +
1)3 Gauss-Lobatto-Legendre integration poin ts for each
element.

Global system and time marching

Before the system can be marched forward in time, the
contributions from all the elements that share a common
global grid point need to be summed. In a traditional
FEM this is referred to as the assembly of the system.
Let U denote the displacement vector of the globalsys-
tem. The ordinary di�erential equation that governs the
time dependence of the global system may be written

in the form M �U + C _U + KU = F , where M denotes
the global mass matrix, C the global absorbing boundary
matrix, K the global sti�ness matrix, and F the source
term. Further details on the construction of the global
mass and sti�ness matrices can be found in (Komatitsch
and Vilotte, 1998). A highly desirable property of a SEM,
which allows for a very signi�cant reduction in the com-
plexit y and cost of the algorithm, is the fact that the
mass matrix M is diagonal by construction. Therefore,
no costly linear system resolution algorithm is needed
to march the system in time (Komatitsch and Vilotte,
1998; Komatitsch and T romp, 1999). Time discretiza-
tion of the second-order ordinary di�erential equation
is achiev edbased upon a classical explicit second-order
�nite-di�erence scheme. Such a scheme is conditionally
stable, and the Courant stabilit y condition is governed
by the minimum value of the ratio betw een the size of the
grid cells and the P -w ave velocity.

Numerical results: lay er-cake models

We study a simple but di�cult model consisting of a layer
over a half-space, as sho wn in Figure 1. The horizontal
size of the block used is 134 km � 134 km, and the block
extends to a depth of 60 km. The non-structured mesh
shown in Figure 2 is composed of 68208 elements, using
a polynomial degree N = 5, whic hresults in 8743801
points. The source is a vertical force located in the
middle of the grid at a depth of 25.05 km. The solution
includes strong multiples in addition to the direct P and

p s ρc  = 2800     c  = 1500       = 2300

p s ρc  = 7500     c  = 4300       = 3200

Free surface

134 km

134 km

60 km

3 km

0 km

Fig. 1: 3-D model with 1-D velocity structure used to assess
the e�ciency of the non-structured brick of Figure 2. We study
a model consisting of a layer over a half-space. The horizontal
size of the block is 134 km � 134 km, and it extends to a depth
of 60 km.

Fig. 2: Non-structured brick used to de�ne a mesh with smaller
elemen ts at the top of the structure.We apply a geometrical
grid doubling in the horizontal directions.

S w aves. The source is a Ricker wavelet with a maximum
frequency of 1 Hz. The time step is �t = 6:5 ms, and we
propagate the signal for 40 s. A line of receivers is placed
at the surface along the y-axis at x = xmax=2 = 67 km.

T races recorded at a receiver at a horizontal distance of
31.11 km from the source are shown in Figure 3 for tw o
of the components of the displacement vector, the third
(tangen tial)component being zero by symmetry. The
strong direct P and S w aves can be clearly observ ed,
as well as strong m ultiples generatedby the layer. We
compare the SEM results to those based upon a discrete-
w avenumber/re
ectivity method. The agreement is very
good. Small parasitic phases re
ected from the absorb-
ing boundaries explainthe small discrepancies observed
betw eent = 30 and t = 35 s. We implemented the par-
allel algorithm based upon the Message-Passing Interface
(MPI) on distributed-memory machines. The total CPU
time on a 8-node Dec Alpha was roughly 8 hours. We
obtained a total sustained performance of 1.3 Giga
op, a
parallel speedup of 7.3, and a parallel e�ciency of 91 %.
The total memory needed was roughly 1 Gigabyte. The
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MPI code was also successfully run on a network of PCs
under Linux (Beowulf).
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Fig. 3: T races recorded at the surface for a layer over a half-
space. The source is located at a depth of 25.05 km. The
receiver is located at a horizon tal distance of 31.11 km.The
vertical (top) and radial (bottom) components of displacement
are compared to the discrete-wavenumber reference. Numerous
strong multiples are clearly visible.

Hemispherical crater

(S�anc hez-Sesma, 1983) studied the response of a hemi-
spherical crater in a homogeneous half-space to a
vertically incident plane P -wave based upon an approxi-
mate boundary method. He presented the displacement
recorded at the surface for di�erent normalized fre-
quencies � = 2a=�P , where a is the radius and �P

the w avelengthof the inciden tP -w ave. We compute
the amplitude of the displacement at the surface along
a pro�le for tw o values of the normalized frequency,
� = 0:25 and � = 0:50, as a function of the normalized
horizon talcoordinate x=a between 0 and 2. P oisson's
ratio is equal to 0.25.

The mesh is composed of 1800 elements, with a poly-
nomial degree N = 4 in each element; the global mesh
contains 120089 poin ts. Considering a P -w avevelocity
of cp = 1732 m.s�1 and an S-wave velocity of cs =
1000 m.s�1, the time step used is �t = 5 ms, and the
signal is propagated for 16 s. The density is 1000 kg.m�3.
The source is a Ricker w avelet with dominant frequency
f0 =

p
3=4 Hz. Figure 4 shows a comparison in the fre-

quency domain for � = 0:25 and � = 0:50. The agreement
is excellent. The strong ampli�cation close to the edges
is w ell reproduced.The ampli�cation level of the vertical
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Fig. 4: Amplitude of the tw o components of displacement
recorded along the crater, from the center to x=a = 2 km.
The vertical and radial components are displayed. The third
(tangen tial) component is zero by symmetry. The results are
shown for tw o normalized frequencies, � = 0:25 (top) and
� = 0:50 (bottom). The solid and dashed lines are the results
of S�anchez-Sesma (1983).

component reaches a v ery high value (' 3.2) in the center
for � = 0:50.

Homogeneous model with strong attenuation

We consider a 2-D homogeneous medium of size 2000 m
� 2000 m. Strong atten uation represen tedby constant
QP ' 30 and QS ' 20 is introduced. The relaxed
(elastic) velocities of the medium are cp = 3000 m.s�1

and cs = 2000 m.s�1. The density is 2000 kg.m�3. We
expect very signi�cant physical v elocity dispersion. The
source is a vertical force in the middle of the model.
Its time variation is a Ricker w avelet with dominant
frequency f0 = 18 Hz. The constant values QP ' 30 and
QS ' 20 are mimicked usingt w o standard linear solids
as in (Carcione et al., 1988).

The medium is discretized using 44 � 44 spectral ele-
ments, with a polynomial degree N = 5. The global
grid comprises 221 � 221 = 48841 points. We use a
fourth-order Runge-Kutta scheme to march the strong
form of the memory variable equations. The time step
is �t = 0:75 ms. We propagate the signal for 0:75 s. In
Figure 5 we present both the SEM and the analytical so-
lutions for a receiver located at xr = zr = 1500 m. The
agreement is very good. The amplitude of the S-w ave is
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Fig. 5: Amplitude of the horizontal (top) and v ertical (bot-
tom) component of displacement recorded in a 2-D homoge-
neous medium with constan t QP ' 30 and QS ' 20. We
presen t both the spectral-element solution (solid line) and the
analytical solution of Carcione et al. (1988) (dashed line). The
very strong e�ect of atten uation can be observed by compar-
ison with an elastic medium with the same relaxed material
properties (dotted line).

reduced by a factor of more than tw owith respect to a
purely elastic simulation.

Conclusions

We have presented a spectral-element method for 3-D
seismic w avepropagation. It incorporates surface to-
pography, atten uation and anisotropy, and accurately
represents surface w aves. We ha ve benchmarked the
method against a discrete-wavenumber/re
ectivity
method for a layer-cak emodel. The accuracy of the
free-surface implementation w as demonstrated for a
hemispherical crater em beddedin a homogeneous half-
space. The e�ects of atten uation were incorporated
based upon an absorption-band model, and validated by
comparison with the analytical solution.
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