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Summary

We presen t a spectral element method to simulate elas-
tic w avepropagation in realistic geological structures
involving interfaces and steep topography for 2D and 3D
geometries. The spectral element method is a high-order
variational appro ximationof the elastic w aveequation.
The mass matrix is diagonal by construction, whic h
drastically reduces the computational cost. The time
discretization is based on a Newmark scheme written in
a predictor/multi-corrector format. A spatial sampling
of appro ximately 4or 5 poin tsper wavelength is found
to be very accurate. This fact is demonstrated by
comparing the computed solution to the analytical
solution of the classical 2D problem of an explosiv e
source in a half-space. The 
exibilit yof the method is
illustrated by studying a realistic tw o-dimensional model
with steep topography (mountain ranges). The method
is also sho wn to provide an e�cient tool for studying the
di�raction by 3D topography and the associated e�ects
on ground motion.

In troduction

The use of elastic w aveequations to model the seismic
response of heterogeneous geophysical media with topog-
raph y and complex interfaces is a subject that has been
intensiv ely in vestigated.The challenge is to develop high
performance methods capable of solving the elastic wave
equations accurately, and that are capable of dealing with
large and complicated domains as encountered in realistic
3D applications.

Finite di�erence methods (Virieux, 1986) ha ve been
widely implemented with a varying degree of sophisti-
cation. Unfortunately, con ventional sc hemes su�er from
grid dispersion near large gradien tsof the w ave�eldor
when too coarse computational grids are used. Although
more suited to heterogeneous media with complicated ge-
ometries, �nite element methods have attracted less in-
terest in geophysics due to the fact that low-order �nite
element methods exhibit poor dispersion properties (Mar-
furt, 1984), while higher order classical �nite elements
lead to some problems such as the occurrence of spurious
w aves. Boundary integral represen tations of the prob-
lem (Bouchon et al., 1996) are often very accurate but
unfortunately limited to linear and homogeneous prob-
lems. Moreover, the resulting linear systems of equations
are very large, non-symmetric and dense, whic hmakes
their application to 3D problems di�cult. Pseudospec-
tral methods have also been proposed for elastodynamics
(Carcione and Wang, 1993), but su�er from important
limitations: non-uniform spacing of the collocation points

puts stringent constrains on the time-step that cannot be
easily removed, and as in any global method, only smooth
topography can be handled.

Therefore, here w euse a spectral element method (P a-
tera, 1984; Priolo et al., 1994; Komatitsch and Vilotte,
1998) to solve the 2D and 3D elastic wave propagation in
complex geometries. The method, which deriv es from a
w eak v ariational formulation, allows a 
exible treatment
of boundaries and interfaces, and deals with free-surface
boundary conditions naturally. It combines the geometri-
cal 
exibility of a low-order method with the exponential
con vergence rate associated with spectral techniques, and
su�ers from minimal numerical dispersion and di�usion.

The Spectral Element Method

We consider the variational formulation of the elastody-
namic equation. The most commonly used formulation is
based on the principle of virtual work and can be written
using the displacement vector u and the test function w
as (Hughes, 1987):

(w; ��u) + a(w;u) = (w; f) (1)

where a(�; �) denotes the bilinear form that expresses the
virtual work of the internal stresses, de�ned as :

a(w;u) =

Z



� :rw dV =

Z



rw : c :ru dV (2)

where �:rw = �ij@wi=@xj and c is the sti�ness tensor.
Lik e in a standard �nite element method, the original do-
main is discretized into nel non-o verlapping quadrilateral
elements: �
 =

Snel
e=1

�
e. Eac helement �
e is mapped
on to a reference volume 2 that is de�ned, in a local �-
system of coordinates, as a square or a cube �nd with
� = [�1; 1]. Eac h element integral, de�ned over the do-
main �
e in the ph ysical space, is pulled bac k, using a
local mapping Fe, on the parent domain 2 and numer-
ically in tegrated using the numerical quadrature de�ned
as the tensor-product of the 1D Gauss-Lobatto-Legendre
formulas. The (N + 1)nd basis points for the polynomial
basis are taken to be the same as the quadrature points
on eac helement �
e, and de�ne a local collocation grid
�e
N = f�i; �j ; �kg that is the nd-tensor product of the

N + 1 Gauss-Lobatto-Legendre integration points.

The piecewise-polynomial approximation wh
N of w is de-

�ned using the Lagrange interpolation operator IN on
the Gauss-Lobatto grid �e

N : IN(wj�
e
) is the unique

polynomial of PN(2) whic hcoincides with wj�
e
at the

(N +1)nd poin ts of �eN . If l
N
i (�) denotes the characteris-

tic Lagrange polynomial of degree N associated with the
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Gauss-Lobatto point i of the 1D quadrature formula, the
appro ximation ofwj�
e

is de�ned as :

w
h
N j�
e

(x) =
NX

i;j;k=0

lNi (�)l
N
j (�)l

N
k (�)w

e
ijk (3)

with x = Fe(�i; �j ; �k) and we
ijk = w

h
N j�
e

� Fe(�i; �j ; �k).
This procedure leads, like in the �nite element method,
to a coupled system of ordinary di�erential equations :

M �ut = F
ext
t � F

int
t (ut): (4)

We use nnode to denote the total number of nodes of the
global integration grid �N de�ned as the assembly of the
element domain integration grids �N =

S
e
�e
N ; ut de-

notes the global displacement vector at a giv en time t;
F
int is the in ternal nodal force vector, and F

ext the ex-
ternal source term. The mass matrix M is diagonal by
construction. This system is then discretized in time us-
ing a classical second-order Newmark scheme (Hughes,
1987) written in predictor-multicorrector format.

The spectral element method combines the geometric 
ex-
ibility of the �nite element method with the fast conver-
gence associated with spectral techniques. The discrete
solution su�ers from minimal numerical dispersion and
di�usion, a fact of primary importance in the solution
of realistic geoph ysicalproblems. In practice, a spatial
sampling of appro ximately4 or 5 poin tsper minimum
w avelength is found very accurate when working with a
polynomial degree N = 8. T ypically , for 2D simulations
with a 100,000 points curvilinear grid, the memory occu-
pation is of the order of 30 Megabytes and the CPU time,
for a simulation over 2000 time steps, is of the order of
15 minutes on an UltraSparc-1. For large 3D simulations,
using a 5,000,000 points curvilinear grid, the memory oc-
cupation is of the order of 1 Gigabyte and the CPU time
is of the order of 1 or 2 hours on a parallel computer.

Garvin's problem

Garvin's problem (Garvin, 1956) is a classical test to
check the accuracy of a wave propagation code. An ho-
mogeneous elastic half-space is considered, with a com-
pressiv e source (explosion) placed exactly at the surface.
There exists an analytical solution to this problem. The
main event is the propagation of a strong Rayleigh wave
along the surface. The Rayleigh pulse is non dispersive,
as the medium is homogeneous and the surface is 
at. Its
amplitude remains constan tin the case of plane strain.
The corresponding snapshots are presented on Figure 1,
and the seismograms on Figure 2, the receivers being lo-
cated at the free surface. One can observe the direct P
w ave, the strong Rayleigh wave with its t ypical elliptical
polarization, and the head w ave. Comparison with the
analytical solution at receiver 100 at the end of the line
is displa yed on Figure 3.V ery good agreement is found,
the maximum relative error being less than 1 %.

Fig. 1: Snapshots for tilted Garvin's problem with an explosive
source placed at the free surface. The strong Rayleigh w ave
with its t ypical elliptical polarization can be clearly observed,
as w ell as the head wave.
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Fig. 2: Seismograms for tilted Garvin's problem with an ex-
plosiv e source placed at the free surface. The main event is a
strong non dispersive Rayleigh w ave. No signi�cant numerical
noise can be observed.

Realistic model in South America

It is also interesting to study a more realistic example.
We consider a geological structure in the Andes (courtesy
Elf Aquitaine). The width of the model is 5500 m, and
the \a verage" height of the topography is roughly 1300 m.
The mesh is shown on Figure 4. It is composed of 60 � 12
elements, using a polynomial degree of 8. The total num-
ber of points is 46657. The source is an explosion inside
the model at (x; z) = (1000; 670) m. Its time dependence
is a Ric ker w avelet ha ving a central frequency of 12 Hz.
The line of receivers is placed at the free surface betw een
x = 900 and x = 5000 m.
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Fig. 5: Seismograms obtained for the realistic model in the
Andes using the \real" velocity model. Di�raction from the
topograph y is particularly clearly .

Fig. 6: Three dimensional model : a Gaussian-shaped hill is
superimposed on an homogeneous elastic half-space. The total
num ber of collocation points is 4935953.

accuracy of the method. The discrete solution presen ts
minimal numerical dispersion. High accuracy is obtained
using only 4 or 5 poin tsper minimal w avelength. The
capabilit y of the method to handle complex free-surface
geometries and deformed internal interfaces ha ve been
illustrated by solving a realistic 2D problem involving a
mountain range. Finally, the spectral method has been
shown to be an e�cient tool to study the di�raction of
elastic w aves by 3D topography and its e�ect on ground
motion.
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Fig. 7: Seismograms of the horizontal component of the dis-
placement vector at receivers placed on the free surface, along
the minor (left) and major (right) axes of the 3D topography.
In addition to the direct wave (a), a strong directivit y e�ect is
observ ed on the di�racted P (b) and Rayleigh (c) w aves that
are recorded mainly along the minor axis. Some artefacts due
to the periodic boundary conditions (d) are also observed.
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