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Introduction

In the last decade, the deployment of dense regional arrays such as the USArray transportable array 
has considerably improved our capacity to image the interior of the Earth. However, the use of the 
wealth of information coming from these new and large amounts of high quality broadband data still  
heavily  relies  on  asymptotic  approaches.  A  finite-frequency  approach  has  been  used  in  a  few 
tomographic studies at the regional scale, but for reasons of efficiency sensitivity kernels computed 
with  the  asymptotic  approach  (ray  theory)  introduced  by  Dahlen  et  al.  (2000)  were  used,  thus 
neglecting the near-field effects that are important in the vicinity of stations (Favier et al., 2004). In  
addition, this asymptotic approach to compute Fréchet kernels uses a spherically symmetric reference 
Earth model. In principle, these shortcomings can be overcome by full-wave approaches, which have 
been developed recently. However, these methods still suffer from a heavy computational cost, which 
limits their application to periods larger than a few seconds, even at the regional scale (Tape et al.,  
2009). Hereafter, we present a numerical method that allows us to model short period teleseismic  
waves in 3-D media, opening the possibility to perform waveform inversion of seismograms recorded 
by dense regional broadband arrays.

Computation of traction in a Global Spherical model

Domain Reduction Methods are particularly attractive when the source is far from the local structures  
and if one wants to perform a sequence of simulations for this source with variable local structures. It 
is particularly relevant in high-resolution imaging based upon waveform inversion of teleseismic body 
waves at the regional scale. The Problem in then to compute wave propagation in a global spherically 
symmetric Earth model. For this purpose, normal mode summation has been widely used to compute 
long period synthetic seismograms because it provides accurate and complete solution of the wave 
equation.  However,  its  main shortcoming is  that  the computation of  spheroidal  modes at  periods 
below 8s is difficult, and that the number of modes that need to be summed increases dramatically  
with the frequency.
Thus, while normal mode methods are ideally suited to the computation of long period seismograms, 
they are not suitable to the modeling of high frequency teleseismic body wave records. In the 90s,  
new methods were developed to obtain exact solutions of the wave equation in a spherical Earth  
model. These methods solve systems of coupled first order ordinary differential equations (SODE, Eq 
5) with respect to the radial coordinate for each expansion coefficient of the displacement vector 
expressed in the basis of the vector spherical harmonics. The GEMINI method (Green functions of the 
Earth  by  MINor  Integration)  directly  solves  for  the  expansion  coefficients  of  displacements  by 
numerically integrating spherical SODE (Eq 5) using second-order minors (Friederich & Dalkolmo,  
1995). 

In  the  frequency domain,  the  displacement  field  induced by  a  seismic  wave  is  governed by  the 
equation of motion:

                                                       −
2 u=∇ .f                                                                 (1)

where  is the density, u the displacement,  the stress tensor, and f the equivalent force due to a 
seismic source. To solve (1), it is useful to represent the displacement u in terms of scalar potentials:
 
                                                  u=U r∇ 1 V−r×∇ 1 W                                                         (2)
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where ∇1 denotes the surface gradient:
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Each potential in (2) can be expanded in fully normalized spherical harmonics. For example:
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 Where Y l

m is  the  spherical  harmonic  function  of  degree  l and  azimuthal  order m .  From the 
equation set (1) - (4), we obtain a set of coupled ordinary differential equations for displacement and  
stress: 
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where y is a vector containing displacement and stress potentials U l
m , R l

m ,Vl
m , Sl

m
 for spheroidal 

motion,  or W l
m ,T l

m
 for  toroidal  motion.  The  excitation  vector  s contains  the  expansion 

coefficients  of  the  source  force  potentials.  We have  modified  the  GEMINI  software  in  order  to  
compute and store the solution of (5) at depth, because in its initial form the software only computed  
the displacements at the free surface. Once the displacement vector is obtained, we use it to compute 
the  traction vector  on the sides  of  a local  grid.  First,  we obtained the strain tensor  from the 
displacement  by  computing  the  partial  derivatives  of  spherical  harmonics  with  respect  to  the  
colatitude  and longitude  . We then obtain the components of the stress tensor by:

                                                            =C:                                                                             (6)

from which we can compute the traction t = σ · n on any surface defined by its unit normal n. 

Coupling 1-D global and 3-D regional numerical modeling technique

The 3-D regional model that we want to study in detail is embedded in a 1-D spherically-symmetric  
global model. We build a mesh that includes the whole 3-D model and extends into part of the 1-D 
model, and thus the material properties on its edges are those of the 1-D model. To simulate seismic  
wave propagation in that mesh, we need to introduce the incident field corresponding to teleseismic 
sources  (epicentral  distance  larger  than  3000  km)  and  also  need  to  absorb  the  outgoing  waves 
diffracted by the 3-D model. To do that, we follow the method suggested by Bielak & Christiano  
(1984), in which absorbing boundary conditions are applied to the diffracted field only. We write the  
total displacement vector u  as the sum of the incident wave field u0 , which is known numerically 
at all the mesh points and at each time step from the GEMINI calculations performed in the global 1-
D model, and the diffracted field ud . We compute the total field in the mesh using the SEM and 
then  apply  the  absorbing  boundary  condition  to ud=u−u0 .  We  currently  use  the  paraxial 
absorbing boundary condition of Stacey (1988). This approximate boundary condition relates traction 
to velocity:

                                  t=[v nn .∂t ud . nv1t1 .∂t ud . t1v2t2 .∂t ud . t2]                         (7)
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where t1 and t 2 are orthogonal unit vectors tangential to the absorbing boundary with outward 
normal  n, vn is the quasi-P wave speed of waves traveling in the direction  n, v1 is the quasi-S 
wave speed of wave polarized in the t1 direction, and is the quasi-S wave speed of waves polarized 
in the t 2 direction. Using PML Perfectly Matched absorbing Layers would be more efficient and 
will be implemented in future work. Implementing the paraxial absorbing condition to the diffracted 
field only implies knowledge of the traction vector and of the displacement vector corresponding to  
the incident wave field on all the absorbing edges of the grid because they must be subtracted from  
the total field before applying the absorbing condition; we compute them using a modified version of 
the GEMINI code described above because the material properties along those edges are those of the  
1-D model. In the 3-D regional domain, we use a spectral element method (see e.g. Cohen (2002),  
Tromp et al. (2008)), which is a highly accurate technique to model seismic wave propagation in 
elastic or anelastic media. The SEM is based upon the variational (or weak) form of the seismic wave 
equation.  Because it  uses  high-degree polynomial  basis functions,  it  can handle  distorted meshes 
(Oliviera & Seriani, 2011) and does not necessitate interpolation of material properties, it is highly  
accurate and allows us to include all  the complexity that may affect the seismic wave fields: the  
topography of  the free  surface and of  internal  discontinuities,  anelasticity,  anisotropy,  and lateral  
variations of elastic parameters and density.

Validation

Figure 1 Comparison of displacement seismograms (up to 5s) computed at the free surface with the  
GEMINI method and spectral element method (SPECFEM3D). The source is an explosion located at  
30° epicentral distance and 200 km depth. The embedded model inside the local box is the same as  
that used for the teleseismic propagation.  

In order to test the code we generated waveforms for a wide range of trials models. We show here an  
example  using  the  spherical  model  inside  a  2-degree  wide  regional  box.  We  computed  the 
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displacement at the free surface with the GEMINI method and spectral elements method. As shown in 
Figure 1, the results are very close, which validates the method.

Conclusions

We developed an hybrid method to model short period teleseismic waves in 3-D media. We solve the 
equations of motion directly in the frequency domain to propagate teleseismic waves from the source 
to a 3D regional domain. The knowledge of traction and displacement fields along  the edges of the 
domain allows us to use a spectral element method inside this domain and thus model the full 3D 
wave  field.  Each of  these  two  approaches  has  the  advantage  of  requiring  modest  computational 
resources, opening the possibility to perform waveform inversion of seismograms recorded by dense 
regional broadband arrays.
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