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Abstract

We introduce a spectral element method for modeling wave propagation in
media with both fluid (acoustic) and solid (elastic) regions, as in offshore
seismic experiments. The problem is formulated in terms of displacement in
elastic regions and a velocity potential in acoustic regions. Matching between
domains is implemented based upon an interface integral in the framework of
a predictor-multicorrector iterative time scheme.

Formulation of the problem

We consider a linear elastic rheology for the heterogeneous solid, while the fluid is assumed
to be inviscid and of constant density.

ρü = ∇ · σ + f ,
σ = C : ε = λtr(ε)I + 2µε ,
ε = 1

2
[∇u + (∇u)T ] ,

(1)

The wavefield in the acoustic, inviscid fluid is governed by the conservation and dynamics
equations (e.g., [7])

ρv̇ + ∇p = 0 ,
ṗ + ρc2∇ · v = 0 ,

(2)

where v denotes the velocity vector, p pressure, and c the speed of acoustic waves. Assuming
that the density ρ is constant, we have ∇ × v = 0. Thus the velocity v can be written as
the gradient of a scalar potential φ [7]. Substituting the definition v = ∇φ in (2), we can
eliminate pressure and obtain a second-order system

∇2φ = c−2φ̈ . (3)

To couple the two media at a fluid-solid interface, we have to ensure the continuity of traction
τ = σ · n̂. From (2) we see that the pressure p equals −ρφ̇, which implies that the continuity
of traction may be expressed as

τ = ρφ̇ n̂ . (4)

The kinematic boundary condition of continuity of the normal component of velocity is

n̂ ·∇φ = n̂ · u̇ . (5)
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Discretization

We rewrite the above coupled system of equations in a variational or weak form, by multi-
plying with test functions and integrating by part

∫

Ωs

ρw · ü dΩ +
∫

Ωs

∇w : C : ∇u dΩ

−
∫

Γi

ρw · n̂ φ̇ dΓ−
∫

Γs
abs

w · τ dΓ = 0 , (6)

∫

Ωf

c−2wφ̈ dΩ +
∫

Ωf

∇w ·∇φ dΩ

+
∫

Γi

w u̇ · n̂ dΓ +
∫

Γf
abs

c−1wφ̇ dΓ =
∫

Ωf

wf dΩ . (7)

The solid and fluid regions of the model are denoted by Ωs and Ωf respectively, Γf
abs denotes

the acoustic absorbing boundary, Γs
abs denotes the elastic absorbing boundary, and Γi denotes

the interface between the two media. This weak formulation of the problem forms the basis
for the spatial and temporal discretization of the problem in the next two sections using the
spectral element method (SEM). For more details regarding SEM, the reader can refer to
[8, 6, 4, 5].

Spatial discretization

We introduce a Legendre spectral element discretization of the variational problem (6)–
(7). The domain Ω is first meshed in terms of a set of nel non-overlapping elements Ωe, as
in a classical FEM. Each of these elements is individually mapped to a reference domain
Λ = [−1, 1]nd based upon an invertible local mapping Fe. On the reference element Λ we
introduce a set of local basis functions that provide accuracy of order N for the solution. We
choose this set of functions to be polynomials of degree N . We introduce a set of N +1 points
ξi, ∈ [−1, 1], called the Gauss-Lobatto-Legendre (GLL) points. We subsequently choose the
set of basis functions to be the N +1 Lagrange interpolants hp(ξ). All the integrals appearing
in (6)–(7) may be approximated at the element level using GLL quadrature:

∫

Ω
uw dΩ =

nel∑

e=1

∫

Ωe

uw dΩ

'
nel∑

e=1

N∑

i=0

N∑

j=0

ωiωjJe(ξi, ηj)u
e(ξi, ηj)w

e(ξi, ηj) , (8)

where ωi > 0 are the weights of the classical GLL quadrature that can be computed numer-
ically [2], and Je is the Jacobian associated with the mapping Fe. Let wN = (wx, wz)

T , wN ,
uN = (ux, uz)

T and φN denote the piecewise-polynomial approximations of the test-functions.
The discrete variational problem to be solved can thus be expressed as: for all time t, find
uN and φN such that for all wN and wN we have

(wN, üN) + as(wN ,uN)− As(wN , φN)Γi
= (wN , τN)Γs

abs
,

(wN , φ̈N) + af (wN , φN) + Af (wN ,uN)Γi
= (wN , φN)Γf

abs
+ (wN , fN) . (9)

Time discretization of the resulting system of second-order ordinary differential equations
is achieved using a classical implicit Newmark scheme written in a predictor/multicorrector
format [3]. For a general second-order system of the form

M d̈ + Cḋ + Kd = F , (10)
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the scheme is written as

M d̈n+1 + Cḋn+1 + Kdn+1 = Fn+1 , (11)

where

dn+1 = dn + ∆tḋn +
∆t2

2
[(1− 2β)d̈n + 2βd̈n+1] , (12)

and
ḋn+1 = ḋn + ∆t[(1− γ)d̈n + γd̈n+1] . (13)

The scheme is applied to advance in time both the displacement in the solid and the velocity
potential in the fluid. At the initial time t = 0, zero initial conditions are assumed i.e., d = 0
and ḋ = 0.

Numerical tests for a flat interface

We consider two homogeneous half-spaces in contact at a flat interface. The lower part of
the model is elastic, with cp = 3400 m/s, cs = 1963 m/s and ρ = 2500 kg/m3, while the
upper part is acoustic, a water layer. The size of each domain is 6.4 × 2.4 km. We use a
total of 120× 90 = 10800 spectral elements. The polynomial degree is N = 5, therefore the
total number of points of the global mesh is 271051. Absorbing conditions are used on all the
edges of the grid to simulate two half-spaces. The source time function is a Ricker wavelet
with dominant frequency f0 = 10 Hz. The minimum number of points per wavelength is
close to 5. In practice, the implicit Newmark scheme converges after 3 corrector iterations
at each time step. The source is placed at a distance of zs = 500 m above the interface.
The 110 receivers are located on a horizontal line at a distance of zr = 533.33 m above the
interface and at a horizontal offset from the source varying between 925 m and 4425 m.

a
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Figure 1: Snapshot of the velocity vector at time t = 1.26 s. The cells shown represent the
mesh of spectral elements. The size of the domain is 6.4×4.8 km. The direct (a) and reflected
(b) P waves can be observed in the fluid, the transmitted P (c) and P -to-S converted (d)
waves are clearly visible in the solid. Significant refracted waves are also present (e,f,g) as
well as spurious reflections on the absorbing boundaries (N).
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Figure 1 shows the acquisition geometry and a snapshot of the velocity vector field at
time t = 1.26 s. Several phases can be distinguished:

(a) the direct P wave,

(b) the reflected P wave,

(c) the transmitted P wave,

(d) the P -to-S converted wave,

(e) the P refracted wave converted to S-wave in the solid,

(f) the P refracted wave in the fluid,

(g) the S refracted wave converted to P -wave in the fluid.

We now compare the numerical solution obtained with our SEM to the analytical so-
lution of the problem. The comparison is performed at receiver #40. The horizontal and
vertical components of the numerical and analytical velocity are shown almost superimposed
in Figure 2. The difference between the two curves is also shown in the same plot using an
amplification factor of 5. The agreement is very good for all phases, which further validates
the method.
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Figure 2: Horizontal (left) and vertical (right) components of velocity recorded at re-
ceiver #40. The solid line represents the numerical solution, the dashed line, which is almost
perfectly superimposed to the solid line, is the analytical solution, and the dotted line is the
difference between the two curves amplified by a factor of 5. The agreement is excellent.

Numerical test for a sinusoidal interface

We now consider a model of the sea floor with strong sinusoidal topography. A free surface
is implemented at the surface of the sea, an absorbing condition at the bottom of the solid,
and periodic conditions on the vertical sides of the region of interest. All model parameters
remain the same as before. The source is located at xs = 2908.33 m at a depth of zs = 1700 m
below the surface of the sea. The line of receivers is composed of 50 receivers going from
xr1 = 3200 m to xr50 = 5400 m at a depth of zr = 1500 m. The horizontal mesh follows the
shape of the sea floor in order to be able to impose the matching condition between domains
at the sinusoidal interface. The length of the records is 2.1 s and the time step is ∆t = 0.7 ms;
therefore the total number of time steps is 3000.

The snapshot of the velocity vector shown in Figure 3 illustrates the complexity of the
wave field, in particular the presence of curved reflected and transmitted waves, triplications,
and interface waves. The main phases that can be distinguished are:
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Figure 3: Snapshot of the velocity vector for a sea bottom with strong sinusoidal topogra-
phy. Strongly curved reflected waves, triplications due to the topography of the sea floor
(d), transmitted P -waves and transmitted S-waves (f) can be observed. The direct P -wave
undergoes total reflection at the surface of the sea (g). The slow event traveling along the
sea floor on the second snaphot (h) is interpreted as a Stoneley wave.

(a) the direct P -wave,

(b) the strongly curved reflected P -wave on the first anticline on the right,

(c) the P -wave reflected off the first anticline on the left (symmetric of phase (b)),

(d) the P -wave reflected off the central syncline, which undergoes a time delay and therefore
a triplication,

(e) various transmitted P -waves,

(f) various transmitted P -to-S converted waves,

(g) the P -wave reflected at the surface of the sea,

(h) a slow phase traveling along the interface, which is interpreted to be Stoneley wave [1].

Conclusions

We have shown that the use of a velocity potential in homogeneous acoustic regions allows to
use the spectral element method for modeling wave propagation near a fluid-solid interface.
Correct matching conditions between the fluid and the solid regions are enforced based upon
a weak formulation of the interface equations. The discrete system obtained is solved in the
context of an implicit iterative time scheme. Good accuracy is obtained for a test case with
flat interface. The method is robust when strong interface topography is present.
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l’élastodynamique 2D et 3D en milieu hétérogène. PhD thesis, Institut de Physique du
Globe de Paris, Paris, France, 1997. May 1997.

[7] L. D. Landau and E. M. Lifshitz. Fluid mechanics. Pergamon Press, New-York, 1959.

[8] E. Priolo, J. M. Carcione, and G. Seriani. Numerical simulation of interface waves by
high-order spectral modeling techniques. J. Acoust. Soc. Am., 95(2):681–693, 1994.

6


