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A High-Order Time and Space Formulation of the Unsplit
Perfectly Matched Layer for the Seismic Wave Equation

Using Auxiliary Differential Equations (ADE-PML)

R. Martin1, D. Komatitsch1,2, S. D. Gedney3 and E. Bruthiaux1,4

Abstract: Unsplit convolutional perfectly matched layers (CPML) for the veloc-
ity and stress formulation of the seismic wave equation are classically computed
based on a second-order finite-difference time scheme. However it is often of inter-
est to increase the order of the time-stepping scheme in order to increase the accu-
racy of the algorithm. This is important for instance in the case of very long simu-
lations. We study how to define and implement a new unsplit non-convolutional
PML called the Auxiliary Differential Equation PML (ADE-PML), based on a
high-order Runge-Kutta time-stepping scheme and optimized at grazing incidence.
We demonstrate that when a second-order time-stepping scheme is used the convo-
lutional PML can be derived from that more general non-convolutional ADE-PML
formulation, but that this new approach can be generalized to high-order schemes
in time, which implies that it can be made more accurate. We also show that the
ADE-PML formulation is numerically stable up to 100,000 time steps.

Keywords: Finite differences, FDTD, high-order, Perfectly Matched Layer (PML),
seismic wave propagation, absorbing conditions, Auxiliary Differential Equations
(ADE).

1 Introduction

Several numerical techniques can be used to model seismic wave propagation,
for instance the finite-difference (FD) method (e.g., Madariaga, 1976), spectral
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or pseudo-spectral techniques (Tessmer and Kosloff, 1994; Komatitsch, Coutel,
and Mora, 1996), boundary-element or boundary-integral methods (Kawase, 1988;
Sánchez-Sesma and Campillo, 1991; Rodríguez-Castellanos, Sánchez-Sesma, Luzón,
and Martin, 2006), finite-element methods (Lysmer and Drake, 1972) or spectral-
element methods (Liu, Polet, Komatitsch, and Tromp, 2004; Chaljub, Komatitsch,
Vilotte, Capdeville, Valette, and Festa, 2007; Tromp, Komatitsch, and Liu, 2008).
In order to mimic an infinite or semi-infinite medium, absorbing techniques have
been developed and adapted to the above mentioned methods: for instance damp-
ing layers or ‘sponge zones’ (Cerjan, Kosloff, Kosloff, and Reshef, 1985; Sochacki,
Kubichek, George, Fletcher, and Smithson, 1987), paraxial conditions (Engquist
and Majda, 1977; Stacey, 1988; Higdon, 1991) or asymptotic local or non-local
high-order operators (Givoli, 1991, 2008; Hagstrom and Hariharan, 1998).

The Perfectly Matched Layer (PML), introduced by Bérenger (1994) for Maxwell’s
equations, is now widely used because it has the advantage of having a zero reflec-
tion coefficient at all angles of incidence and at all frequencies before discretization
by a numerical scheme in the case of an infinite PML. It was rapidly reformulated
with complex coordinate stretching for a split wave field (Chew and Weedon, 1994;
Collino and Monk, 1998) and applied to acoustic or elastic problems (Chew and
Liu, 1996; Collino and Tsogka, 2001; Komatitsch and Tromp, 2003; Fauqueux,
2003; Marcinkovich and Olsen, 2003; Wang and Tang, 2003; Basu and Chopra,
2004; Cohen and Fauqueux, 2005; Festa and Vilotte, 2005; Ma and Liu, 2006; Lu
and Zhu, 2007; Komatitsch and Martin, 2007; Basu, 2009; Kristek, Moczo, and
Galis, 2009) as well as to viscoelastic (Martin and Komatitsch, 2009) or poroelas-
tic (Zeng, He, and Liu, 2001; Martin, Komatitsch, and Ezziani, 2008) media.

In the context of finite-difference formulations of the classical PML, the seismic
wave equation is usually written as a first-order velocity-stress system in time.
That first-order formulation can not be used as such in second-order displacement
formulations such as finite-element methods, spectral-element methods or some
finite-difference methods (Moczo, Robertsson, and Eisner, 2007). Komatitsch and
Tromp (2003) and Basu and Chopra (2004) derived PML formulations suitable for
the second-order system written in displacement. Festa and Vilotte (2005) showed
that the first-order PML formulation can be used together with a second-order for-
mulation of the equations inside the computational domain because the Newmark
time-stepping scheme and the midpoint rule used in the staggered velocity-stress
formulation are equivalent. Even if the PML is perfectly matched by construction
before discretization, after discretization it is no longer perfectly matched, which
generates spurious waves that propagate back into the main domain. This is ac-
centuated for waves reaching the PML layer at grazing incidence. To overcome
these problems, one can modify the complex coordinate stretching used classically
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in the PML by introducing a shifting of the poles and implementing a Butterworth-
like filter in the PML (Kuzuoglu and Mittra, 1996). This has first been developed
for Maxwell’s equation (Roden and Gedney, 2000; Bérenger, 2002a,b) and then
adapted to the seismic wave equation in the context of unsplit 2D or 3D finite-
difference formulations (Martin, Komatitsch, and Barucq, 2005; Martin and Ko-
matitsch, 2006; Komatitsch and Martin, 2007; Drossaert and Giannopoulos, 2007;
Martin, Komatitsch, and Ezziani, 2008), or a split 2D spectral-element formulation
(Festa and Vilotte, 2005; Festa, Delavaud, and Vilotte, 2005).

Meza-Fajardo and Papageorgiou (2008) suggested a sponge layer called the Mul-
tiaxial PML (M-PML) based on a stabilization of a split PML formulation. It is
not a PML any more because by coupling two damping directions the perfectly
matched layer character of the technique of Bérenger (1994) is lost (the theoretical
reflection coefficient for an infinite PML is not exactly zero any more before dis-
cretization). An unsplit variational formulation has been proposed in the context
of the spectral-element technique in Martin, Komatitsch, and Gedney (2008). In
Komatitsch and Martin (2007) and Martin, Komatitsch, and Ezziani (2008) seismic
wave propagation was modeled based on numerical schemes that are second-order
in time and space. For wave propagation in viscoelastic and poroelastic media, in
Martin, Komatitsch, and Ezziani (2008) and Martin and Komatitsch (2009) we used
a fourth-order spatial scheme but kept a second-order time-stepping scheme. But
many authors use finite differences at high order in both space and time (see e.g.
Dablain (1986)) for real applications to increase accuracy and reduce the numerical
cost, in particular for long simulations. It is thus important to be able to extend the
CPML to higher-order time schemes.

Therefore in this article we design a PML improved at grazing incidence based
on a fourth-order Runge-Kutta time-stepping scheme and an eighth-order scheme
in space. We use some ideas coming from the high-order PML formulation de-
veloped for Maxwell’s equations by Gedney and Zhao (2010) and apply them to
seismic wave propagation. The main idea is to notice that the time stepping formu-
lation of the auxiliary memory variables arising from the second-order trapezoidal
integration rule applied to the time discretization of the convolution term can be re-
formulated in a similar form that can be interpreted as a time-evolution equation for
the memory variables. That formulation is called ADE-PML (Gedney and Zhao,
2010), that is to say a PML using an Auxiliary Differential Equation. These mem-
ory variable equations together with the equations of time evolution of the velocity
and stress components can be used with stretching functions with more than one
pole in the PML frequency shift, thus implementing a Butterworth filter to improve
the behavior at grazing incidence as in the CPML. In this article, we validate the
approach by comparing seismograms to a high-order FD reference solution cal-
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culated on a large domain, and we study the accuracy and stability for long time
periods numerically.

2 Equivalence between convolution and ADE (auxiliary differential equa-
tions) perfectly matched layers

Let us compare different formulations and discretizations of the elastodynamics
equation and show the equivalence between CPML and the non-convolutional ADE-
PML for a second-order time discretization. This will also allow the derivation of
the high-order time-advancement scheme of the ADE-PML.

The elastodynamics equation written as a first-order system in velocity vector and
stress tensor is (e.g., Madariaga, 1976; Virieux, 1986; Moczo, Robertsson, and Eis-
ner, 2007):

ρ
∂vi

∂ t
=

∂σi j

∂x j
+ si

∂σi j

∂ t
= λεkkδi j +2µεi j , (1)

where εi j = 1
2

(
∂v j
∂xi

+ ∂vi
∂x j

)
is the velocity strain tensor, vi are the components of the

velocity vector, σi j the components of the stress tensor, si are the components of the
(known) source force vector, ρ is the density and λ and µ are the Lamé parameters.
In two dimensions we can develop the equations as

ρ
∂vx

∂ t
=

∂σxx

∂x
+

∂σxy

∂y
+ sx

ρ
∂vy

∂ t
=

∂σxy

∂x
+

∂σyy

∂y
+ sy

∂σxx

∂ t
= (λ +2µ)

∂vx

∂x
+λ

∂vy

∂y
∂σyy

∂ t
= (λ +2µ)

∂vy

∂y
+λ

∂vx

∂x
∂σxy

∂ t
= µ

(
∂vx

∂y
+

∂vy

∂x

)
. (2)

In our previous articles on the unsplit perfectly matched layer formulation we per-
formed a convolution integration of the memory variable equations following Lueb-
bers and Hunsberger (1992). But let us show that a simple time advancing equation
of the memory variables can be formulated and discretized using a high-order semi-
implicit time scheme. As in the construction of a classical PML or a Convolution
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PML, the spatial derivatives along the axis perpendicular to the PML layer, say x,
are rewritten in a stretched coordinate x̃, based on (see e.g. Komatitsch and Martin
(2007)):

∂x̃ =
1
sx

∂x (3)

where

sx = κx +
dx

αx + iω
. (4)

Then, following Komatitsch and Martin (2007), we can express:

1
sx

=
1
κx
− dx

κ2
x

1
(dx/κx +αx)+ iω

(5)

and

dx = d0

( x
L

)N

κx = 1+(κmax−1)m

αx = αmax[1− (x/L)p] (6)

where L is the thickness of the PML layer, N = 2 and d0 =− (N+1)cpmax log(Rc)
2L , cpmax

being equal to the speed of the pressure wave and Rc being the target theoretical
reflection coefficient, chosen here as 0.1% (see e.g. Collino and Tsogka (2001)).
We also take p = 1 and αmax = π f0, where f0 is the dominant frequency of the
seismic source. κmax usually lies between 1 and 20 (Martin and Komatitsch, 2009)
and we usually take m = 2. By sake of simplicity we will study the term ∂xσxy

in detail, keeping in mind that similar formulations are derived for the x and y
derivatives of vx, vy, σxx and σyy in 2D when PML layers are present along both
axes of the grid. The term ∂xσxy is transformed into

1
sx

∂xσxy =
1
κx

∂xσxy−
dx

κ2
x

1
(dx/κx +αx)+ iω

∂xσxy. (7)

Let us denote Qσxy
x the auxiliary memory variable associated with ∂xσxy, i.e.:

Qσxy
x = − dx

κ2
x

1
(dx/κx +αx)+ iω

∂xσxy , (8)

which leads to(
dx

κx
+αx + iω

)
Qσxy

x = − dx

κ2
x

∂xσxy. (9)
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Written in the time domain this equation becomes

∂tQ
σxy
x +

(
dx

κx
+αx

)
Qσxy

x =− dx

κ2
x

∂xσxy (10)

and consequently the whole system of equations for elastodynamics with ADE-
PML is

∂tσxx = (λ +2µ)(
1
κx

∂xvx +Qvx
x )+λ (

1
κy

∂yvy +Qvy
y )

∂tσyy = (λ +2µ)(
1
κy

∂yvy +Qvy
y )+λ (

1
κx

∂xvx +Qvx
x )

∂tσxy = µ

(
(

1
κx

∂xvy +Qvy
x )+(

1
κy

∂yvx +Qvx
y )

)
ρ∂tvx =

1
κx

∂xσxx +Qσxx
x +

1
κy

∂yσxy +Qσxy
y

ρ∂tvy =
1
κx

∂xσxy +Qσxy
x +

1
κy

∂yσyy +Qσyy
y . (11)

Let us now discretize the differential equations, taking the example of Qσxy
x again.

Let us write

∂tQ
σxy
x +

1
τx

Qσxy
x =− dx

κ2
x

∂xσxy, (12)

where τx = 1
dx
κx

+αx
. At time t = −∞, the medium is at rest and contains no waves

therefore we have Qσxy
x (−∞) = ∂tQ

σxy
x (−∞) = 0 and thus τx

dx
κ2

x
∂xσxy = 0 at t =−∞,

which is relevant because there is no signal and thus velocities and stresses are
equal to zero at t = −∞. The solution of equation (12) can be formulated by the
method of variable decomposition as

Qσxy
x = A(x,y, t)exp−

t
τx . (13)

At time t = tn we have

Qσxy
x (tn) = A(x,y, tn)exp−

tn
τx = A(x,y, tn)exp−

tn−1
τx exp−

∆t
τx . (14)

By introducing equation (13) in equation (12) we obtain

∂tA(x,y, t) =− dx

κ2
x

exp
t

τx ∂xσxy. (15)
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Integrating this equation in time from tn−1 to tn, we can write at second order in
time

A(x,y, tn) = A(x,y, tn−1)− τx
dx

κ2
x

∂xσ
n−1/2
xy exp

tn−1
τx ×(exp

∆t
τx −1) (16)

and then, using equations (14) and (16), the time discretization of equation (12) at
the second order in time reduces to

Qσxy
x (tn) = exp−

∆t
τx Qσxy

x (tn−1)− τx
dx

κ2
x
(1− exp−

∆t
τx )∂xσ

n−1/2
xy . (17)

Finally we have

Qσxy
x (tn) = bxQσxy

x (tn−1)−ax
∂σxy

∂x

n−1/2

, (18)

where bx = exp−∆t/τx and ax = τx
dx
κ2

x
(1−bx).

One can notice that equation (18) has the same form as the CPML formulation of
equation (26) of Komatitsch and Martin (2007), which shows that the CPML can
be derived from the Auxiliary Differential Equation (ADE) formulation of equa-
tion (12) after time discretization when a second-order time scheme is used. The
CPML can be seen as a particular case of the ADE-PML at the second order in
time. But the advantage of the ADE-PML formulation is that it can be extended to
a higher-order time scheme, as will be shown in Section 3.

3 High-order discretization in time and space of the non-convolutional ADE-
PML formulation

Using a generalization of the equivalent ADE-PML equations, we can discretize the
memory variable equations with higher accuracy based on a fourth-order Runge-
Kutta (RK4) time scheme. A RK4 scheme in time consists of a four-step inner loop
at each time step. At each step of the Runge-Kutta time scheme an explicit, semi-
implicit or implicit treatment of the Q memory terms can be performed. In what
follows, we first describe the time discretization of auxiliary memory variables in a
generalized two-pole CPML formulation for one iteration, and second we describe
the two-pole ADE-PML formulation for one iteration of the RK4 time scheme.
We will see that in the frequency domain formulation the spatial derivatives are
transformed identically in CPML and ADE-PML, and that the CPML and ADE-
PML differ only after inverse Fourier transform in the time domain.

In equations (12) and (18) the C-PML or ADE-PML formulations are only filtered
by one pole in the frequency shift of equation (2). Let us then introduce a more
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general shift with two poles, i.e., a sharper (more accurate) Butterworth filter. Let
us use the decomposition

1
sx

=
1

sx1

1
sx2

(19)

and let us denote the previous expression

1
s

=
1
s1

1
s2

(20)

for simplicity. One can switch from CPML to ADE-PML by simply changing the
coefficients involved in the calculation of memory variables after time discretiza-
tion. At each time step, the auxiliary memory variables in the CPML formulation
with two poles are computed at the second order using a similar technique as for
the one-pole CPML version. Let us summarize the different steps in the case of
two poles.

In the frequency domain we replace the derivative ∂σxy
∂x with 1

s1s2

∂σxy
∂x , where

1
s1

1
s2

=
(

1
κ1
− 1

B1

)(
1
κ2
− 1

B2

)
=

(
1

κ1κ2
− 1

C1
− 1

C2

)
. (21)

If we let

1
B1

= − d1

κ2
1 [(d1/κ1 +α1)+ iω]

1
B2

= − d2

κ2
2 [(d2/κ2 +α2)+ iω]

(22)

then

1
C1

=
1

κ2B1
g1

1
C2

=
1

κ1B2
g2 (23)

with

g1 = 1− κ1d2

ξ1,2

g2 = 1+
κ2d1

ξ1,2
(24)
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and

ξ1,2 = κ1(κ2α2 +d2)−κ2(κ1α1 +d1). (25)

Going back to the time domain by inverse Fourier transform and applying the re-
cursive convolution as in the case of one pole, the derivative 1

s1

1
s2

∂σxy
∂x becomes

1
κ1κ2

∂σxy
∂x +Qσxy

1 +Qσxy
2 in the CPML formulation, where

Qσxy
1 (n∆t) = b1Qσxy

1 ((n−1)∆t)− c1
∂σxy

∂x

n−1/2

Qσxy
2 (n∆t) = b2Qσxy

2 ((n−1)∆t)− c2
∂σxy

∂x

n−1/2

(26)

and

b1 = exp−∆t/τ1

c1 = α1
g1

κ2
(1−b1)

b2 = exp−∆t/τ2

c2 = α2
g2

κ1
(1−b2). (27)

Here τi = 1
di
κi

+αi
with i = 1,2. In practice we take d1 = d2 = dx. If we want to use

only one pole we set s2 = 1 (κ2 = 1 and Qσxy
2 = 0), which then gives the CPML

formulation of equation (18). But we have seen above that the CPML formulation
is not suitable at high order in time, therefore the equivalent ADE-PML formulation
is preferred.

For the ADE-PML formulation with two poles we can apply the same reasoning
as for the CPML. In the frequency domain 1

s1

1
s2

∂σxy
∂x becomes 1

κ1κ2

∂σxy
∂x −

1
C1

∂xσxy−
1

C2
∂xσxy using equation (21). We introduce the auxiliary memory variables Qσxy

1

and Qσxy
2 defined as

Qσxy
i =− 1

Ci
∂xσxy (28)

for i = 1,2 and then

Qσxy
1 = − 1

κ2B1
g1∂xσxy

Qσxy
2 = − 1

κ1B2
g2∂xσxy. (29)
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We then go back to the time domain by inverse Fourier transform and obtain the
new formulation of derivatives 1

κ1κ2

∂σxy
∂x +Qσxy

1 +Qσxy
2 with the following time evo-

lution equations of the memory variables

∂tQ
σxy
1 +

(
d1

κ1
+α1

)
Qσxy

1 = − d1

κ2
1 κ2

g1∂xσxy

∂tQ
σxy
2 +

(
d2

κ2
+α2

)
Qσxy

2 = − d2

κ2
2 κ1

g2∂xσxy. (30)

where g1 and g2 are the functions defined in equations (24), i.e., the same func-
tions as in the CPML formulation. After discretization of equation (30) in the time
domain at the fourth order using RK4 time scheme, Qσxy

1 satisfies

Qσxy
1 ((n+νi)∆t)−Qσxy

1 (n∆t)
νi∆t

=− d1

κ2
1 κ2

g1∂xσxy((n+νi−1)∆t)

−
(

d1

κ1
+α1

)(
θQσxy

1 ((n+νi)∆t)+(1−θ)Qσxy
1 (n∆t)

)
. (31)

Finally we have

Qσxy
1 ((n+νi)∆t) = b1,iQ

σxy
1 (n∆t)− c1,i∂xσxy((n+νi)∆t) (32)

with

b1,i =
κ1−θ∆tνi(d1 +κ1α1)
κ1 +θ∆tνi(d1 +κ1α1)

(33)

c1,i = −d1g1
∆tνi

κ1κ2(κ1 +θ∆tνi(d1 +κ1α1))
(34)

where subscript i corresponds to the ith iteration of the four stages of one RK4
cycle, and ν1 = 0, ν2 = 0.5, ν3 = 0.5 and ν4 = 1. A similar expression is obtained
for the Qσxy

2 memory variable by swapping indices 1 and 2. The explicit, semi-
implicit or implicit implementations of the auxiliary memory variables are obtained
with θ = 0, 1/2 or 1 respectively. To illustrate more precisely how the velocity and
stress components are calculated using the RK4 time scheme, the set T of variables
(vx, vy, σxx, σxy, σyy) (see Figure 1) is updated at time step n + 1 using T n at time
step n based on the following algorithm:

Let T = T n; for i = 1 to 4 do

T̃ = T n +νiṪ i∆t

T̃ = T̃ + s((n+νi)∆t)
Ṫ i = f (T̃ ,si)
T = T +πiṪ i∆t (35)
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Figure 1: Elementary staggered finite-difference grid cell based on the components
of the 2D velocity vector and stress tensor.

and then reset T n+1 = T at the end of the cycle.

Function f represents the right-hand side of the velocity-stress equations (2) and
is a function of the derivatives of the velocity and stress components, and of the
known source term s. The constants of the RK4 scheme are ν1 = 0, ν2 = 0.5,
ν3 = 0.5, ν4 = 1 and we also have π1 = 1/6, π2 = 2/6, π3 = 2/6, π4 = 1/6 (see
Press, Teukolsky, Vetterling, and Flannery (1994)). In the case of a shift with
only one pole, we set κ2 = 1, g1 = 1 and Qσxy

2 = 0 and then the high-order time
discretization of equation (12) can be retrieved.

Instead of a classical Taylor expansion, we use the more accurate Holberg coeffi-
cients (Holberg, 1987; Rodrigues, 1993) to compute the spatial derivatives involved
in the whole system of equations at eighth order in space. These coefficients are
calculated by development and truncation at a given order and filtering so as to
decrease the error made on the group velocity and therefore reduce the overall nu-
merical dispersion. For instance the horizontal spatial derivative of a given variable
V is computed numerically using

∂V
∂x
|i+1/2=

c1(Vi+1−Vi)+ c2(Vi+2−Vi−1)+ c3(Vi+3−Vi−2)+ c4(Vi+4−Vi−3)
∆x

(36)

where c1 = +1.231666, c2 = -0.1041182, c3 = +0.02063707 and c4 = -0.003570998.
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4 Numerical results

To illustrate the equivalence of the CPML and ADE-PML formulations and also the
good performance of ADE-PML at fourth order in time and eighth order in space,
we perform several simulations in a homogeneous elastic medium with density
ρ = 2800 kg.m−3, pressure wave velocity cp = 3300 m.s−1 and shear wave velocity
cs = 1905 m.s−1. The domain has a size of 1000 m × 6400 m, including all the
PML layers, and the numerical grid consists of 101 × 641 points with a 10 m
spatial step. We perform the first two simulations with the classical CPML and the
ADE-PML formulation with a second-order accurate solution method. The next
two simulations are performed with the RK4 time-formulation and the 8th-order
Holberg space-discretization with a single pole in the frequency shift, using first an
explicit and second a semi-implicit ADE-PML time discretization. The time step is
∆t = 10−3 s to ensure stability based on the CFL stability condition of the explicit
time schemes used. We compare the results to a reference solution computed with
the same time step but on a larger grid. The source is the first derivative of a
Gaussian in time with a dominant frequency of 8 Hz located at point (xs = 790 m,
ys = 4270 m). The seismograms are recorded at three receivers located at points
(x1 = 200 m, y1 = 4130 m), (x2 = 700 m, y2 = 2270 m) and (x3 = 810 m, y3 =
270 m). The first receiver is located close to the left PML at 100 m from its bottom,
while the source and the second and third receivers are located very close to the
right at around 200 m and 100 m respectively from the PML. The third receiver is
located 4 km away from the source in order to analyze the impact of the PML on
waves that travel a long distance at near grazing angles along the PML boundary.
The configuration is shown in Figure 3.

For the sake of simplicity, we denote by RK4 the ADE-PML solution that involves
one pole shift computed using a fourth-order Runge-Kutta time scheme and eighth-
order space scheme with Holberg coefficients. To absorb the energy efficiently and
avoid large reflections at grazing incidence, we take κmax = 1, αmax = π f0 and dmax

calculated as in Komatitsch and Martin (2007) with Rc = 10−5. The PML layers
have a thickness of 100 m, i.e., 10 grid points. In Figure 2, the seismograms of the
horizontal and vertical components of the velocity vector calculated with second-
order accurate CPML or second-order semi-implicit (or explicit) accurate ADE-
PML show extremely similar behavior and are very well superimposed. The time
evolution of total energy plotted in Figure 6 is also almost identical in the case of
the second-order semi-implicit ADE-PML, which illustrates the equivalence of the
CPML and ADE-PML techniques, the semi-implicit ADE-PML scheme showing
an almost totally perfect agreement with CPML solutions in terms of total energy
decay. This agreement is better than in the second-order explicit ADE-PML case.

In Figure 3 we show snapshots of wave propagation at different times using a
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Figure 2: Second-order ADE-PML (dashed line) and classical CPML (solid line)
solutions in a thin homogeneous elastic slice surrounded by four PMLs for the hor-
izontal (left column) and vertical (right column) component of velocity recorded at
the first (top), second (middle) and third (bottom) receivers (represented by green
squares in Figure 3) compared to a reference solution (dotted line). At these re-
ceivers located close to the upper PML layers (10 grid points away from its be-
ginning) the agreement is good in spite of the grazing incidence and almost no
spurious oscillations are observed. The third receiver located far from the source
exhibits more discrepancies because it is located at large offset and is therefore
very sensitive to waves reaching the PML at very grazing incidence. ADE-PML
and CPML are almost perfectly superimposed, which illustrates the equivalence
between the two techniques. The differences appear mostly at medium and long
time periods (Figure 6).
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Figure 3: Snapshots of the horizontal component of the velocity vector in a ho-
mogeneous medium for a thin slice with ADE-PML conditions with αmax = π f0
and κmax = 1 implemented on its four sides, at time 0.4 s (top), 0.8 s, 1.6 s, 2 s
and 2.4 s (bottom). We represent it in red (positive) or blue (negative) when it has
an amplitude higher than a threshold of 1% of the maximum, and the normalized
value is raised to the power 0.30 to enhance small amplitudes that would otherwise
not be clearly visible. The orange cross indicates the location of the source and the
green squares the position of receivers at which seismograms are recorded. The
four vertical or horizontal orange lines represent the edge of each PML layer. No
spurious wave of significant amplitude is visible, even at grazing incidence. The
snapshots have been rotated by 90◦ to fit on the page.
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fourth-order Runge-Kutta time scheme. As in the case of the snapshots of second-
order CPML shown in Figure 3 of Komatitsch and Martin (2007), no spurious
modes propagate back into the main domain. Figure 4 shows comparisons between
a reference solution and RK4 semi-implicit and explicit solutions. At the three re-
ceivers, RK4 simulations are far more accurate than the second order ADE-PML
of Figure 2, which exhibits large discrepancies in terms of amplitude and spuri-
ous waves with larger errors at all the receivers, particularly at receiver #3 which
is located far from the source and for which spurious waves have time to develop
at grazing incidence. This is due to two main factors, the higher level of numer-
ical dispersion of the second-order ADE-PML and the fact that the second-order
ADE-PML is less accurate at a large offset close to the PML (which is similar as
for the CPML seismograms shown in Komatitsch and Martin (2007)). In Figure 5,
we show RK4 solutions computed with κmax = 7. The results are improved at all
receivers, even at receiver #3 at large offset, compared to solutions computed with
κmax = 1 in Figure 4. The explicit and semi-implicit solutions are still similar ex-
cept in terms of decay of energy after approximately 5 s, when the physical waves
have left the computational domain.

An important thing to study when designing a perfectly matched layer is the nu-
merical stability of the PML at long time periods. In Figure 6, for a simulation
over 106 time steps, we observe that in the first 3 s the total energy of the system
decays much faster by almost 20 orders of magnitude using RK4 ADE-PMLs than
using the second-order ADE-PML; and a semi-implicit scheme seems to ensure
faster energy decay. Then, after around 5 s, energies computed with semi-implicit
or explicit RK4 ADE-PML reach values as low as around 10−9 J (lower than the
around 10−8 J reached in the second-order simulations) and values around 10−44 J
and 10−46 J at around 100 s for the explicit and semi-implicit cases respectively,
while in the case of the second-order ADE-PML total energy reaches values around
10−13 J at around 100 s. In all cases semi-implicit schemes show faster decay of
energy.

In Figure 7 we compare RK4 simulations with two poles in the frequency shift
to the reference solution. We take κ1max = 1 and κ2max = 20 with α1max = π f0
and α2max = 2π f0 but observe no significant improvement compared to the one-
pole solution of Figure 4. For our seismic wave propagation application, using two
poles is thus unnecessary and the one-pole version is sufficient to absorb the waves
efficiently. In the case of Maxwell’s equations, Gedney and Zhao (2010) mention
that using two poles can be of interest when trying to damp evanescent waves, or in
the case of periodic models, which is not the case for our seismic wave propagation
application.
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Figure 4: High-order (fourth-order in time and eighth-order in space) ADE-PML
solution, using explicit or semi-implicit implementations of the auxiliary memory
variables, in a thin homogeneous elastic slice surrounded by four PMLs for the hor-
izontal (left column) and vertical (right column) component of the velocity vector
recorded at the first (top), second (middle) and third (bottom) receiver (represented
by green squares in Figure 3) compared to a reference solution (dotted line). At
these receivers located close to the upper PML layers (10 grid points away from its
beginning) the agreement is good in spite of the grazing incidence and almost no
spurious oscillations are observed. The third receiver located far from the source
exhibits more discrepancies because it is located at large offset and is therefore very
sensitive to waves reaching the PML at very grazing incidence. The semi-implicit
and explicit solutions are very similar and are more accurate than the second order
solution shown in Figure 2. Semi-implicit or explicit ADE-PML and reference so-
lutions are almost perfectly superimposed, which illustrates the good accuracy of
ADE-PML. The differences between semi-implicit and explicit techniques appear
mostly at medium and long time periods (Figure 6).
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Figure 5: Same as in Figure 4 but with κmax = 7 instead of κmax = 1. At these re-
ceivers located close to the PML layers (10 grid points away from its beginning) the
agreement is good in spite of the grazing incidence and only tiny spurious oscilla-
tions are observed. At the third receiver the improvement is particularly significant
compared to Figure 4. The semi-implicit and explicit solutions are very similar and
are more accurate than the second-order solution of Figure 2 and the high-order
solution of Figure 4.
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Figure 6: (Top): Decay with time of total energy in semi-logarithmic scale for
the homogeneous elastic medium modeled in the seismograms of Figure 2 and the
snapshots of Figure 3 for medium and long time periods, up to 100 s (i.e. 100,000
time steps) of simulation for the second-order CPML (dashed line) and second-
order ADE-PML (solid line). Both energy curves are superimposed, which illus-
trates again the equivalence of the two formulations. No instabilities appear even
at long time periods where energy values as low as 10−13J are reached. (Bottom):
Energy decay for medium and long time periods (100 s, i.e. 100,000 time steps) for
the numerical solution of Figure 4. No instabilities are observed in the explicit or
semi-implicit high-order RK4 solutions, which means that the discrete ADE-PML
at the fourth order in time and eighth order in space is stable up to 100,000 time
steps. Total energy reaches a value as low as 10−9 J at t = 5 s, while it reaches a
value of 10−8 J in the second-order case (top). After 100 s total energy is 10−44 J
in the explicit case and 10−46J in the semi-implicit case, while it is around 10−13 J
in the second-order case (top). The semi-implicit case seems to lead to faster decay
of the energy in all cases.
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Figure 7: Same as in Figure 5 but with two poles in the frequency shift, and using
κ1max = 1 and κ2max = 20 instead of κmax = 7 in the one-pole case. No significant
improvement is observed compared to the one-pole solution of Figure 5.
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5 Conclusions

We have shown that at the second order in time the convolutional PML can be de-
rived from a more general non-convolutional ADE-PML formulation. To increase
accuracy we then designed a non-convolutional ADE-PML optimized at grazing
incidence that can be generalized to high-order schemes in time and that is numer-
ically stable up to 100,000 time steps. Long time stability is ensured numerically
with RK4 ADE-PML, as in the classical second-order CPML and also the second-
order ADE-PML, but solutions are more accurate.

We have implemented semi-implicit and explicit time schemes for the auxiliary
memory variables and have shown that a semi-implicit scheme leads to more effi-
cient energy absorption at long time duration in all cases. If the value of κmax is
increased from 1 to 7, solutions are improved at large offset and at grazing inci-
dence. As mentioned in Martin and Komatitsch (2009), in practice one can not use
a value of κmax much higher than around 20 because otherwise steep variations of
the κ(x) profile are not accurately discretized by the numerical grid.

Finally, at high order in time and space the one-pole version of ADE-PML is suf-
ficient to ensure accurate results in our application, and the more general two-pole
version does not bring significant improvements in terms of accuracy.

Acknowledgement: The authors thank Heiner Igel and Peter Moczo for fruitful
discussions about high-order time schemes for finite-difference techniques.
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